
(Proto)DUNE Prompt-
Processing Infrastructure

10th April 2024

Lino Gerlach1, Torre Wenaus1, Xin Qian1, Brett Viren1, Michael Kirby1

1Brookhaven National Lab (US)

Overview

2

• Before leaving DUNE, I did some research on infrastructure for Prompt-Processing

• Today: Overview of what I found & where it stands

• Required features of a prompt-processing system

• What (partial) implementations exist?

• Local demonstrator prototype

• Used in Run 1: p3s (from Maxim Potekhin)

• A possible solution based on POMS

Prompt Processing - Intro

3

turn-around time

online offline

DAQ Monitoring Online DQM Prompt Processing
Classic Offline
Reco ‘campaigns’

~ seconds ~ minutes ~ hours ~ month

What do I mean when saying ‘Prompt Processing’?

• Offline data analysis as it comes in (‘promptly’)

• Run first steps of full reco so that output can be used for further analysis

• Record data quality metrics on the side (DQM)

• Distinguish between payload and infrastructure (focus of this talk)

Online DQM vs Prompt Processing

4

Online DQM

• Fixed computing resources
• Consider fraction of data
• Output only high-level metrics
• Run light-weight analysis (e.g.

calculate RMS, tracking w/ LARDON)
• Conservative w.r.t. to changes to

code

Prompt Processing

• Flexible computing resources
• Consider all incoming data
• Output high-level metrics & resulting

data products
• Run first steps of full offline reco

((partial) LArSoft or WireCell job, …)
• Very flexible w.r.t. to changes to code

Advantages of Prompt-Processing

5

• Running complex analysis promptly: spot potential problems earlier

• Problems in raw data overlooked by online DQM

• Problems in unseen fractions of raw data

• Potential bugs in offline reco software

• Minimize fraction of raw data read-backs from tape

• Not a problem for ProtoDUNE, but for other prototypes and DUNE

ProtoDUNE II Data Pipeline - Overview

6

ProtoDUNE DAQ Online
Buffer

CERN
CTA

dCache ENStore

FNAL

CERN
EOS

declare

POMS

HTC

Expensive when reading
raw data back from tape
Prompt-processing
could help

Omitted other
storage sites
for simplicity

ingest

MetaCat

Rucio

7

Prompt Processing – Needed Features
• Automatically detect new raw data in buffer

• Launch (parallel) jobs with same payload (NF & SP?)

• Number of parallel jobs depending on backlog

• Record which subset of data was successfully processed

• Possibly restart failed jobs n times

• Mark repeatedly failing jobs for reprocessing later

• Keep data to-be-processed on disk buffer for as long as possible

• Move successfully processed files from disk buffer

• Provide monitoring dashboard

• Number of jobs currently running, fraction of successfully processed data

8

Local Prototype Implementation (Demonstrator)

• Partial Prototype implementation (python):
https://github.com/ligerlac/prompt-
processing

• Separates file handling, batch
handling, book keeping

• Separates interface + implementation
• Easy to replace batch system

backend (or book keeping DB)
• Can be run as single python script or

independent cron job(s)

success_rate = 1 success_rate = 0.5 success_rate = 0.0

https://github.com/ligerlac/prompt-processing
https://github.com/ligerlac/prompt-processing

What had been done in past

9

An offline DQM system was used for ProtoDUNE SP:

• ‘ProtoDUNE Prompt Processing (p3s)’ by Maxim Potekhin (https://github.com/DUNE/p3s)

Purpose

• Continuous low-latency processing of data for data quality monitoring

• Slower than online monitoring, faster than full processing

• Easier to deploy than more complex systems (e.g. PanDA) w/ subset of functionality

Features

• User-defined data reconstruction jobs

• Pilot-based system to avoid slow batch response

• Flexible usage of computing resources

https://github.com/DUNE/p3s

p3s - Existing Solution?

10

Problems with p3s

• Original developer left DUNE (not maintained anymore)

• Only consider (user specified) fraction of data

• Only output high-level metrics – not the resulting data products

p3s could probably be adapted to our needs, but:

• Ideally, leverage existing DUNE tools

• E.g. workflow management (POMS), data movement (Rucio)

• Still some open questions:

• How sluggish is grid submission & data movement?

• How much computing resources are needed?

Proposed Implementation

11

• Single POMS campaign restricted to run @ CERN

• Use POMS’ submission scheduler (‘cron’ - like ‘Draining Dataset’ from Computing tutorial)

• https://dune.github.io/computing-training-basics-short/08-poms-part2/index.html

• ‘Drain’ raw dataset declared in sam by ‘declare daemon’

• Multi-stage workflow:

• 1. stage: NF & SP

• (2.) declare resulting DS in Rucio, Metacat and SAM

• 3. perf. Evaluation

• 4. Upload perf. Evaluation results to DQM dashboard (see Gabriela’s talk)

• Integrated functionality only for SAM

• But: can run any bash script -> Rucio & Metacat already possible

• Rucio integration already on the way (POMS dev. instance w/ Rucio)

https://dune.github.io/computing-training-basics-short/08-poms-part2/index.html

12

Backup

13

Simplified Data Pipeline – Worst Case

ProtoDUNE
DAQ Buffer Tape

Noise Filter
&

Signal Proc.

FNAL
dCache

Full raw data
(waveforms)

Reduced data (~ x10)
(electrons per wire)

Reading back
from tape:
expensive!

analyzer

Want to minimize fraction of
data read back from tape

14

Simplified Data Pipeline – Best Case

ProtoDUNE
DAQ Buffer Tape

Noise Filter
&

Signal Proc.

FNAL
dCache

analyzer

happens within lifetime
of buffer: prompt

Want to maximize fraction of
data that takes this path

