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Today’s talk will cover
• Modeling of LArTPC ionization response
• Basic principle of signal processing
• Noise filtering, deconvolution, signal region-of-interest (ROI)
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• Digital signal processing widely used in
image measurements and analyses
such as medical imaging, astronomy
imaging, etc

• For high-energy physics application, a 
realistic Monte Carlo simulation (e.g. 
detector response) is crucial
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• LArTPC wire-readout measures: 
ionized charge ⊗ response

⊗ ⊕ ⟶

Energy depo + diffusion 
+ rasterization

Long-range and position-
dependent field response Noise Spectrum Final Signal

2D-Convolution based LArTPC Simulation
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Single-Phase TPC Signal Formation

• Induction plane signal strongly depends 
on the local charge distribution, 
collection plane signal is much simpler
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vq: velocity
Ew: weighting field
q: charge

w qi q E v= - × ×
 

Ramo theorem

Example track

Weighting Potential of a U Wire

long-range induction
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Field Response Model: 1D vs. 2D 

5

Example track

Weighting Potential of a U Wire • 1D response model
• Depends on only 1D coordinate (drift direction)

• Sim and SigProc assume current only in the wire nearest to 
drifting electrons

• Pros: computationally fast and algorithmically easy
• Cons: long-range induction effect cannot be ignored

• 2D response model
• Depends on 2D coordinates (drift + pitch directions)
• Pros: works well on some non-2D geometries (e.g., wires)
• Cons: 

• Calculation more difficult than 1D, but reasonable (GARFIELD)
• Sim & sigproc algorithm more complex, slower than 1D
• Imperfect for more complicated 3D geometry (e.g., strips + holes)
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Wire-Cell 2D Response for MicroBooNE 
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• Response model for simulation:
drift vs impact position

• Response model for sigproc:
drift vs wire position  & central wire
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“2.5-D” Response Model
• Recent LArTPC designs utilize electrodes formed on printed circuit board 

(PCB) in the shape of strips with through holes
• The holes break the approximate translational symmetry as in wire-based 

LArTPCs
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Minimal 
repetition 
patch: 

S. Martynenko et al 2023 JINST 18 P04033

• Full 3D model is computationally 
expensive, instead 3D (near electrodes) + 
2D (far field) is faster and precise
• SigProc assumes translational symmetry, 

i.e. averaged 2D response model
• 3D Sigproc is conceivable, but it would be an 

iterative way
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Noise Model

• The stochastic behavior of noise is analytically simulated in the 
frequency space
• A 2-D random walk process in amplitude and phase: Rayleigh 

distribution
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Signal Processing
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Noise Filter

• Noise excess/hardware malfunction can be filtered/fixed before 
charge deconvolution, e.g.,
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Harmonic Noise (36kHz and 108kHz)
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Wire number
Coherent Noise

ASIC Saturation
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Calibration of Electronics Response Function

• Non-ideal electronics response function 
can be corrected channel-by-channel in the 
frequency space

11The Second Wire-Cell Reconstruction Summit, April 10-12

JINST 13 P07007



Basics of (1D) Signal Processing

• Principal method to extract wire 
charge S(t) is deconvolution
• By given a response function R(t), 

signal S(t) can be easily derived via 
Fourier transform
• A filter function F(𝜔) introduced to 

suppress fluctuation after 
deconvolution
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“Liquid Argon TPC Signal Formation, Signal Processing and 
Hit Reconstruction” Bruce Baller, JINST 12, P07010
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Fourier transform

Deconvolution + Filter

Inverse Fourier transform • O(N3) matrix inversion achieved through a O(N logN) fast 
Fourier transformation: top 10 algorithms in 20th century
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Basics of (1D) Signal Processing

• Without a filter function, the 
deconvolution process is equivalent 
to the matrix inverse problem

13

0 0M( ) ( ) ( )
t

t R t t S t dt= - × ×ò

( ) R( ) S( )M w w w= ×

S(t)

M( )S( ) ( )
R( )

Fww w
w

= ×

Fourier transform

Deconvolution + Filter

Inverse Fourier transform

1S R M-= ×

The Second Wire-Cell Reconstruction Summit, April 10-12



Basics of (1D) Signal Processing

• A Filter function is equivalent to a 
regularization in a 𝜒2 minimization 
problem
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Basics of (1D) Signal Processing

• Typical filters in signal processing are 
low-pass filters
• Gaussian filter: smoothness
• Winer filter: minimal mean square error 

“Data Unfolding with Wiener-SVD Method”, W. Tang et al. JINST 12, P10002
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2-D Deconvolution
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• With induced signals, the 
signal is still linear 
summation
• R1 represents the induced 

signal from i+1th wire signal 
to i-th wire

• Si and Si+1 are not directly 
related
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The inversion of matrix R can again be done with deconvolution 
through 2-D Fast Fourier Transformation

Position-dependent 
responses
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Just 2D deconvolution will not be enough
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• The bi-polar nature of induction signal amplifies low-
frequency (LF) noise during deconvolution

• One can suppress the LF noise with a shorter length 
of signal region-of-interest (ROI)

e.g.,  𝑓!"#	= 2 MHz (sampling rate)

N= 100 ticks (ROI length)

⇒ 	𝑓"$% = 1/100 * 2 MHz = 20 kHz

Not sensitive to LF noise < 20 kHz, 

𝑇"&' = 𝑁 ⋅ Δ𝑇

𝑓"$% =
1
𝑁
⋅ 𝑓!"#Δ𝑇
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Decon. w/o low-freq. (LF) filter
Waveform ⟶ charge, dense

ROI:
Hit finding, sparsify

SP result:
Sparse, charge

Procedure of Wire-Cell Signal Processing

Decon. w/ Tight LF

Decon. w/ Loose LF

ROI Finding ROI
Noise Filtering

+ 2D decon.Waveform data

Decon. w/o LF SP Result

induction plane
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Identification of Signal Region-of-interest (ROI)
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• Deconvolution amplifies low-freq. (LF) noise in 
induction wires

• LF filters are applied to search for ROIs

• Expect high efficiency 
but low purity from initial 
ROI search 

tight LF: 
high purity 

loose LF: high 
efficiency 
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Rule-based ROI Refinement
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• ROIs close to each other 
are often identified with 
one ROI due to LF noise

• Important for ROIs close to 
particle interaction 
vertices

• Reduced ROI length 
based on “tight ROI”  
and its connectivity with 
“loose ROI” on adjacent 
channels

Break ROI Shrink ROI
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Wire-Cell NF/SP Performance on MicroBooNE
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Two years efforts summarized in JINST 13 P07006 and JINST 13 P07007 
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Signal Processing: 1D vs WireCell 2D
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JINST, 13, P07007

1D sigproc
• Average reconstructed ionization 

charge for cosmic tracks in different 
angle

• WireCell 2D signal processing can 
correctly recover identical charge from 
each wire plane

• Enables LArTPC tomographic 
reconstruction

• More discussion in parallel session 
for Experimental Need

2D sigproc

1D sigproc 2D sigproc
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DNN ROI with 3-plane Information
JINST 16 (2021) 01, P01036

Multi-plane information in 
Signal Processing

DNN ROI finding with 
multiple input channel

Truth Ref.
DNN 
w/o MP

DNN 
w/ MP

prolonged 
track test

• Information from other wire planes can be used to protect weak 
ROIs (e.g., low S/N in prolonged tracks)
•Deep learning technique can further improve the ROI 

refinement
• Also see Lynn’s talk on SBND signal processing
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Portable parallelization for simulation
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Developed by H. Yu and BNL CSI
Kokkos as example
• ACAT21: https://arxiv.org/pdf/2203.02479.pdf
• Dedicated optimizations to batch data and to 

minimize host-device IO
• 33 times faster 1 A100 GPU vs. 1 CPU core
• 3 times throughput 1 A100 GPU vs. 64 CPU cores

Perlmutter A100 GPU, EPYC 7763 64-core CPU

gen-kokkos H-D dataflow

gen-kokkos performance

https://arxiv.org/pdf/2203.02479.pdf


IDFT: interface for multiple FFT implementation 
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FftwDFT

cuFftDFT

• Developed by B. Viren and Brandon Feder
• Data copying between CPU/GPU needed
• Using IDFT alone seems not the optimal way to speed things up

• useful add-on when having idling GPU cycles
• Still under development



Summary

• An accurate response model is crucial for both LArTPC simulation 
and signal processing
• A 2-D deconvolution technique is developed in Wire-Cell, 

providing better data-MC agreement with long-range induction 
effect considered
• The bi-polar nature of induction wires amplifies low-freq. noise in 

deconvolution, which can be suppressed with a proper 
determination of ROIs
• GPU accelerations are being investigated for Wire-Cell simulation 

and signal processing
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