DNN ROI For WireCell Signal Processing

Mun Jung Jung, Avinay Bhat WireCell Reconstruction Summit April 10th, 2024

WireCell Signal Processing

M. Jung, A. Bhat | WireCell Reconstruction Summit 2024 | April 10, 2024

WireCell Signal Processing

M. Jung, A. Bhat | WireCell Reconstruction Summit 2024 | April 10, 2024

ROI Finding

- Region of Interest (ROI) finding is the process of identifying the window that contains the signal of interest
 - makes signal processing computationally feasible
 - accurate ROI finding is essential for good charge extraction

ROI Finding

- Region of Interest (ROI) finding is the process of identifying the window that contains the signal of interest
 - makes signal processing computationally feasible
 - accurate ROI finding is essential for good charge extraction

M. Jung, A. Bhat | WireCell Reconstruction Summit 2024 | April 10, 2024

Limitations of the Traditional Method

- Procedure for the optimization of the traditional ROI finding algorithm is nontrivial and computationally challenging
 - · filters are simultaneously optimized by coordinate descent approach
 - · decision of filter values from evaluation on different samples by eye
- Optimized algorithm shows limited performance for prolonged tracks

DNN-based ROI Finding

- DNN-based tool to address the limitations of the traditional method
 - network learns and recognizes features of prolonged tracks from images
 - faster and easier optimization process
- Tool developed by the protoDUNE experiment (<u>JINST 16 P01036</u>)
 - Integration into the data signal processing workflow is work-in-progress at SBND and protoDUNE

Network Architecture

- ROI finding is a binary classification task of each pixel in an image
- UNet-type network is a suitable architecture for the task
 - widely used for image registration and segmentation
 - output dimension is same as input dimension

Network Architactura

- ROI finding is a
- UNet-type netw
 - widely used for
 - output dimens

Training Samples

- Training images made from simulated neutrino events
 - **target images** is made from setting a threshold on simulated charge deposit
 - **input images** are made from intermediate stages of the traditional signal processing chain
 - 1. Loose LF filter: preserve prolonged track signals that are washed out my tighter filters
 - 2. 2-plane match
 - 3. 3-plane match: multiplane match outputs to inform network of geometric constraints from other planes

Training Samples

- Training images made from simulated neutrino events
 - **target images** is made from setting a threshold on simulated charge deposit
 - **input images** are made from intermediate stages of the traditional signal processing chain
 - 1. Loose LF filter: preserve prolonged track signals that are washed out my tighter filters
 - 2. 2-plane match
 - 3. 3-plane match: multiplane match outputs to inform network of geometric constraints from other planes

1, make time slices

Pixel Performance Evaluation

• For pixelwise ROI identification performance, DNN-based method shows clear improvement in comparison to the traditional method

- UNet architecture
 - UResNet and Nested UNet had similar performance but more memory usage
- Performance evaluated on simulated muon tracks
 - positive threshold set to 0.5 for DNN ROI finding inference
 - traditional ROI finding from SBND optimized signal processing algorithm

Validation on Prolonged Tracks

- Room for improvement
 - approaches from the training side: deeper network, more samples
 - approaches from the inference side: adjust threshold, extra filtering for resulting false positive noises

Computational Resources

- DNN ROI method requires GPUs for feasible integration into actual data processing workflow
- UChicago group has access to vast computational resources at ALCF
 - Polaris (current production machine) has 560 nodes, each with 32 cores/64 threads Intel Xeon processors, 512 GB RAM, 4 Nvidia A100 GPUs (<u>https://docs.alcf.anl.gov/polaris/hardware-overview/machine-overview/</u>)
 - opportunities for using GPU-accelerated tools workflows

Prompt Signal Processing for SBND

- For SBND, data processing will take place in two locations
 - data will be copied from FNAL dCache to ANL facilities in real-time via GLOBUS
- To take advantage of ANL facilities, signal processing needs to take place after the copying, not after the buffer
- Discussion for data flow has started

Summary and Future Directions

- The DNN-based ROI finding method for WireCell signal processing shows promising performance
 - speed up optimization process of the algorithm
 - improve signal processing performance on prolonged tracks
- Integration of the tool, along with other GPU-accelerated tools is actively being worked on at UChicago and ANL
 - we have vast computation resources providing opportunities for these studies
 - active work software integration is ongoing
 - discussion on the data flow including prompt signal processing has started
- Studies on implications for charge extractions and robustness against detector variations are being discussed