The HEXPLIT algorithm in ElCrecon

Dr. Sebouh J. Paul 12/12/2023

Intro

- HEXPLIT* was developed to improve the position reconstruction in sampling calorimeters by taking advantage of staggered layouts
 - Improves spatial resolution by a factor of ~2
- The HCal Insert and the SiPM-on-tile ZDC are examples of detectors that can take advantage of this algorithm
- The algorithm was originally written as a stand-alone program in Python
- Now a C++ implementation has been added to the EICrecon on a branch**

*arXiv:2308.06939

** https://github.com/eic/EICrecon/blob/sipmzdc/src/algorithms/calorimetry/HEXPLIT.cc

Two components to HEXPLIT (separate algorithms)

- Subcell reweighting
 - Creating subcell hits with energies determined by those of the overlapping hits in neighboring layers,
- Position determination
 - Determine the position of the center of the shower by weighting each (subcell) hit by the log of its energy, with a cutoff determined by the total shower energy
- These algorithms are respectively called HEXPLIT and LogWeightReco in the ElCrecon
 - LogWeightReco can run independent of whether the input hits are normal hits or subcell hits
- These algorithms and their factories have been added in ElCrecon

HEXPLIT algorithm

Formula for subcell reweighting

 $W_{i} = \prod_{j=1}^{N-1} \max(E_{j}, \delta), \quad \text{Product over overlapping cells, } j, \text{ in neighboring layers}$ $E_{i} = E_{\text{tile}} W_{i} / \sum_{j} W_{j}. \quad \text{Energy in a given subcell, } i$

 δ = energy threshold, set to 1 MIP.

LogWeightReco algorithm

Reconstruct shower from (subcell) hits

Core

 $\vec{x}_i w_i$ $\vec{x}_{recon} = \frac{\vec{i} \in \text{subcells}}{\sum}$ i∈subcell

$$w_i = \max\left(0, w_0 + \ln\frac{E_i}{E_{\text{tot}}}\right)$$

 w_0 is cutoff parameter, fine-tuned as a function of the reconstructed particle energy

$$w_0 = \texttt{w0_a} + \texttt{w0_b}\log rac{E_{ ext{recon}}}{\texttt{E0}} + \texttt{w0_c} igg(\log rac{E_{ ext{recon}}}{\texttt{E0}}igg)^2$$

$$E_{ ext{recon}} = \sum_{i \in ext{hits}} E_i / ext{sf}$$

ZDC plugin (for SiPM-on-tile ZDC)

Added these algorithms' factories in the chain of factories in the ZDC SiPM-on-tile's reconstruction

Performance

Position obtained with C++ implementation is consistent with the results we got earlier with the Python implementation.

ZDCLogWeightClusters.position.x[0]-ZDCLogWeightClusters.position.z[0]*MCParticles.momentum.x[2]/MCParticles.momentum.z[2]

Summary

- HEXPLIT has been incorporated into ElCrecon
- Shower-position reconstruction is now its own separate algorithm
- Both algorithms could be used in the context of either the SiPM-on-tile ZDC or the calorimeter insert.
- These have been included in the sipmzdc branch; to be pull-requested into the main branch soon.

Backup slides

Neutron-shower performance for the ZDC-like* calorimeter

unstaggered hexagons

H3 staggering

r_{recon} - r_{truth} [mm]

events 200 events 400 events 600 --- fit: σ = 10.7 ± 0.3 mm baseline baseline fit: $\sigma = 8.3 \pm 0.4$ mm fit: $\sigma = 7.6 \pm 0.5$ mm 350 simulated 50 GeV neutrons HEXPLIT HEXPLIT 600 500 fit: $\sigma = 6.0 \pm 0.2$ mm fit: $\sigma = 5.1 \pm 0.3$ mm 300 500 250 400 Factor of 2 400 200 300 300 150 improvement 200 200 100 100 100 50 -20 20 -20 20 -20 20 arXiv:2308.06939 r_{recon} – r_{truth} [mm] r_{recon} - r_{truth} [mm] r_{recon} - r_{truth} [mm] S2 staggering unstaggered squares events 400 events 200 800 ---- fit: $\sigma = 10.9 \pm 0.2$ mm baseline fit: $\sigma = 8.4 \pm 0.5$ mm simulated 50 GeV neutrons HEXPLIT 600 fit: $\sigma = 6.2 \pm 0.3$ mm 300 500 400 200 300 *Simulations in this paper used much larger transverse 200 100 dimensions to avoid edge effects. 100 -20 20 -20 20 -40 0 40 0

r_{recon} - r_{truth} [mm]

H4 staggering

Energy dependence of position resolution

• H4 staggering improves the resolution by up to 60%, when utilizing the HEXPLIT algorithm

