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Shower at hit level

Intro ;
%
e HEXPLIT* was developed to improve the position BN g
reconstruction in sampling calorimeters by taking ) 2 —
advantage of staggered layouts hit energy (MIP]

baseline reconstruction

o Improves spatial resolution by a factor of ~2
e The HCal Insert and the SiPM-on-tile ZDC are 5
examples of detectors that can take advantage of g
this algorithm
e The algorithm was originally written as a
stand-alone program in Python - O i i
e Now a C++ implementation has been added to the
EICrecon on a branch**
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Two components to HEXPLIT
(separate algorithms)

e Subcell reweighting
o  Creating subcell hits with energies
determined by those of the overlapping hits
in neighboring layers,
e Position determination
o Determine the position of the center of the
shower by weighting each (subcell) hit by
the log of its energy, with a cutoff
determined by the total shower energy

e These algorithms are respectively
called HEXPLIT and LogWeightReco
in the EICrecon

o LogWeightReco can run independent of

whether the input hits are normal hits or
subcell hits

e These algorithms and their factories
have been added in EICrecon
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HEXPLIT algorithm Core MPULES

Portion of
Neutron
Shower

Formula for subcell reweighting

N-1
W; = 1_[ max(Ej,0), Product over overlapping cells, j, in neighboring
j=1 layers

E; = EﬁleWi/Z W;. Energy in a given subcell, i
J

O = energy threshold, set to 1 MIP.
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LogWeightReco algorithm s
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w, is cutoff parameter, fine-tuned as a

function of the reconstructed particle energy
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ZDC plugin (for SiPM-on-tile ZDC)

Added these algorithms’ factories in the
chain of factories in the ZDC
SiPM-on-tile’s reconstruction

ZDCRecHits

(CalorimeterHitCollection)

HEXPLIT
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New output collection



Performance

Position obtained with C++
implementation is consistent with the
results we got earlier with the Python
implementation.
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Summary

e HEXPLIT has been incorporated into EICrecon

e Shower-position reconstruction is now its own separate algorithm

e Both algorithms could be used in the context of either the SiPM-on-tile ZDC or
the calorimeter insert.

e These have been included in the sipmzdc branch; to be pull-requested into
the main branch soon.
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Neutron-shower performance for the ZDC-like* calorimeter
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Energy dependence of
position resolution

e H4 staggering improves the
resolution by up to 60%, when
utilizing the HEXPLIT algorithm
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