# **INTT** Weekly Meeting

Joseph Bertaux

Purdue University

December 13, 2023



## Hot/Dead Channel Analysis



- Re-evaluation of original approach
  - Representations of each term were too vague
  - Needed more constraints on initial parameters
- Analyzed more runs
  - Most analysis was done on 20869
  - Analyzed runs 20444, 20447-20449
  - Gave greater insight into a good classification scheme

#### Overview



#### (For each run)

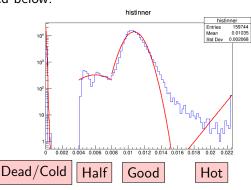
- Go through and append hits to an array (one entry per channel)
- Normalize entries of the array by the number of events in the run
- Write each element of the array to a TTree
  - Branches for hitrate, felix server, felix channel, sensor chip, sensor channel
  - This makes re-fitting/classifying convenient since the entire run does not need to be re-analyzed

# Overview (cont'd)



#### (For each run)

- Obtain mean/standard deviation of this hitrate distribution
  - Used to determine range of TH1, at most only so many standard deviations from the mean are kept
- Fill the TH1
  - Inner/Outer barrels are seperated and chips are normalized by their length (either 2.0 or 1.6 cm)
  - Catch entries that would underflow/overflow based on its range and put them in the first/last bins
  - This gives us the hot channel peak on the right edge
- Fit the TH1 as a sum of several terms:
  - Exponential decays from dead/hot at extremes of the histogram
  - Gaussians for half-entry and good channels
  - Example shown on later slide
  - Parameters/constraints chosen based on inspection of multiple runs


# Overview (cont'd)

Example Fit



Example of application—logscale plot of hitrate distribution (run 20444 inner barrel). The x-axis is the normalized hitrate. Each **term** is fitted over a subrange and are labeled below:

- Dead/cold region (exp. decay)
- Half-entry region (Gauss)
- Good region (Gauss)
- Hot region (exp. decay)



# Overview (cont'd)



#### (For each run)

- Once fitted, go back through the TTree and classify channels using Bayes' Theorem
  - The channel's state is the term which evaluates the highest for its hitrate
  - Cold channels with hitrates of identically 0.0 are classified as "dead"
- Write a separate TTree to a new TFile with the additional state information included as an enum ("0" for "good" and positive for other non-good terms)

#### Codes



All analysis codes for this project can be found in a subdirectory of the INTT repository:

https://github.com/sPHENIX-Collaboration/INTT/tree/main/general\_codes/josephb/codes/channel\_classifier

I will add a README eventually but you can reach out with questions via my email (jbertau@purdue.edu) or over Mattermost.

#### Some results



Portion of channels classified as "good" in each run

| 20444 | 0.952111 |
|-------|----------|
| 20447 | 0.950477 |
| 20448 | 0.948154 |
| 20449 | 0.947051 |

This is effectively our acceptance run-by-run. It seems to be run dependent and potentially time dependent—there is a downward trend in efficiency for this set of runs.

## Some results (cont'd)



Table of run-run agreement of "good" channels. For a pair of runs the agreement is computed as

$$agreement = \frac{number of channels good in BOTH runs}{number of channels good in EITHER run}$$
 (1)

This is designed to check if the same set of channels are found to be "good" run-to-run. We do not expect this to be exactly 1.0 but it should be close.

|       | 20444 | 20447    | 20448    | 20449    |
|-------|-------|----------|----------|----------|
| 20444 | -     | 0.992059 | 0.994265 | 0.993388 |
| 20447 |       | -        | 0.990085 | 0.989326 |
| 20448 |       |          | -        | 0.995658 |

Because this is much closer to 1.0 than the direct efficiency, it is likely a similar set of channels being identified as "good" between different runs

### Plots 20444 - Inner



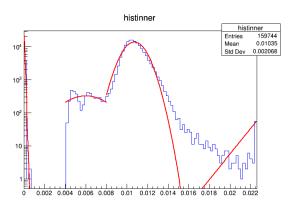



Figure: Fitted, normalized, logscale hitrate distribution for the inner barrel of INTT. Run 20444



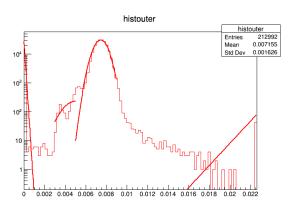



Figure: Fitted, normalized, logscale hitrate distribution for the outer barrel of INTT. Run 20444

### Plots 20447 - Inner



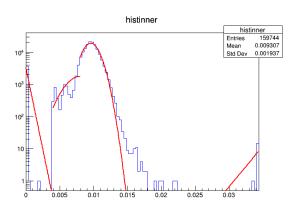



Figure: Fitted, normalized, logscale hitrate distribution for the inner barrel of INTT. Run 20447



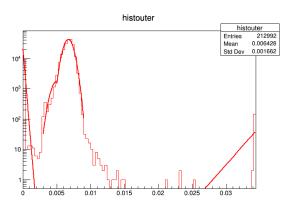



Figure: Fitted, normalized, logscale hitrate distribution for the outer barrel of INTT. Run 20447

### Plots 20448 - Inner



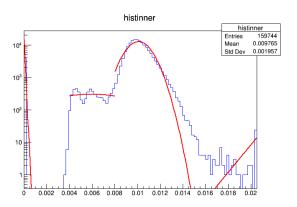



Figure: Fitted, normalized, logscale hitrate distribution for the inner barrel of INTT. Run 20448

### Plots 20448 - Outer



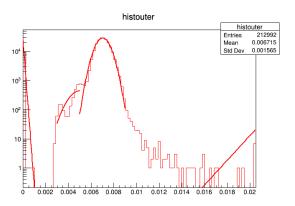



Figure: Fitted, normalized, logscale hitrate distribution for the outer barrel of INTT. Run 20448

### Plots 20449 - Inner



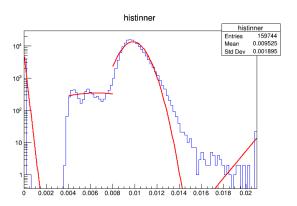



Figure: Fitted, normalized, logscale hitrate distribution for the inner barrel of INTT. Run 20449



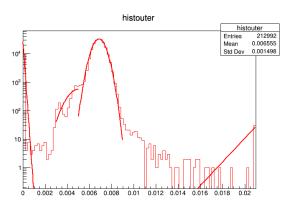



Figure: Fitted, normalized, logscale hitrate distribution for the outer barrel of INTT. Run 20449

## Future work/conclusions



- Current approach seems very reasonable
- However, future work could be to do a more sophisticated normalization of channel acceptance using survey data
  - E.g., normalization by the solid angle subtended by the channel with respect to the primary vertex location
- Study of detector efficiency as a function of time

# Backup



# Theory behind term-by-term classification



We want to compute the probability a channel is in some state s given its hitrate h, that is, P(s|h). We have functional forms to guess for each term, P(h|s) (e.g., Gauss or exponential).

$$P(s|h)P(h) = P(h|s)P(s)$$
(2)

We write our function as

$$f(h) = P(h|s)P(s)$$
(3)

where the coefficients P(s) and the specific parameters of P(h|s) can be fitted to our histogram. Thus the evaluation of each term is the posterior probability (up to a common normalization factor) that the channel is in state s given its hitrate h.