

ePIC MPGD Simulation Status and Needs

Matt Posik Temple University

Overview of Current Simulation

- Geometry
- Material
- Digitization/Reconstruction

Ongoing Work

- Geometry
- Angular resolution

Gimulation Needs

- Geometry/Services
- Digitization/Reconstruction
- Studies

MAPS Barrel + Disks MPGD Barrels + Disks AC-LGAD based ToF

ePIC tracking system is a hybrid of silicon and gaseous technologies

MAPS Layers

- Make up inner tracking volume
- Highly granular and low mass layers to provide excellent momentum resolution and precision pointing resolution

MPGD Layers

- Large area detectors are instrumented in the outer tracking volume
- Provide timing and pattern recognition
- Planar detectors can provide impact point and direction for PID seeding

AC-LGAD

- Fast detector to provide low momentum PID.
- Can provide an additional space point for pattern recognition/redundancy

Crater Lake MPGD Detectors

□ MPGD detectors based on two technologies:

- \blacktriangleright *µMegas* (curved layers) and
- $\succ \mu RWELL$ (planar layers)

Curved layer based on MicroMegas technology

- Approximate cylinder using 128 staves
 - ➢ Width = 2.47cm

□ Barrel:

- ≻ L = 240 cm
- ≻ R = 51.25 cm

Current Status: MicroMegas Barrel

□ Material Budget

Planar layers based on µRWELL technology
Two panels needed for full length
Panels arranged around azimuth
Frame width =20 mm, thickness = 7 mm
Barrel:

- \succ L = 339 cm (−164.5 cm ≤ Z ≤ 174.5 cm)
- ➢ R = ~72.5 cm / 73.5 cm
- \blacktriangleright Overlap in R = 1.2 cm/2 = 6 mm

Current Status: µRWELL Outer Barrel

□ Material Budget

- Pairs of disks in electron and hadron endcaps based on μRWELL technology
 Approximate disk using 48 trapezoid shapes
 Currently no overlaps or module segmentations
 Electron Endcap Disk:
 - $R_{in} = 4.65 \ cm, R_{out} = 50 \ cm$
 - \succ Z = -110 cm, -112 cm

Hadron Endcap Disk:

- \succ $R_{in} = 7 \ cm, R_{out} = 50 \ cm$
- *≻ Z* = 148 *cm*, 161 *cm*

EndcapMPGDSubAssembly

Current Status: MPGD Services

□ Assumptions:

- 1 mm pitch
- 64 chan/ASIC
- 8 ASIC/FEB

Takes into account

- HV (0.0773)
- LV (0.0791)
- FEE Power (0.0887)
- Cooling (0.0032)
- Gas (0.0013)
- Optical Fiber (0.0223)

	Avg X0	Al Thickness (cm)
(BE1 + BE2 + IB1 + IB2 + OB1) z < -167.5	0.09557857	0.850362537
(BE1 + BE2 + IB1 + IB2) -167.5 < z < -120	0.064545617	0.57426235
(BE1 + IB1 +IB2) -120 < z < -110	0.049796311	0.443037781
(IB1 +IB2) -110 < z < -105	0.035047006	0.311813212
(IB2) -105 < z < -48.75	0.017523503	0.155906606
() -48.75 < z < 48.75	0	
(IB3) 48.75 < z < 53.75	0.017523503	0.155906606
(IB3 + IB4) 53.75 < z < 135	0.035047006	0.311813212
(IB3 + IB4+IB5) 135 < z < 148	0.052570509	0.467719818
(IB3 +IB4 +IB5 + FE1) 148 < z < 161	0.067319814	0.598944387
(IB3 +IB4 +IB5 + FE1 +FE2) 161 < z < 174	0.082069119	0.730168956
(IB3 +IB4 +IB5 + FE1 +FE2 + OB2) 174 < z	0.113102073	1.006269143

*Material averaged over area

More details

Current Status: MPGD Services

InnerTrackerSupport_assembly 1.2 -0.8 00 θ (qeg) θ 80 0.6 0.4 0.2 φ (deg)

*Also includes Si services

Current Status: Digitization

- Readout Segmentation is defined in the DD4HEP (epic repo)
 xml files
 - Simulated hits are "binned" following the readout segmentation
 - A minimum deposited energy is used to set a threshold
 - "pixel" charge used for ADC of reconstructed hit
- □ Uses digitization used by Si detectors

Segmentation Grid

```
<readouts>
<readout name="ForwardMPGDEndcapHits">
<segmentation type="CartesianGridXZ" grid_size_x="sqrt(12)*150*um" grid_size_z="sqrt(12)*150*um" />
<id>system:8,layer:2,module:6,sensor:16,x:32:-16,z:-16</id>
</readout>
</readouts>
```

mpgd_forward_endcap.xml

On Going Work: Inner MicroMegas Barrel (CyMBal)

- Work on implementing updated inner MicroMegas
 Barrel into DD4HEP started by Niveditha
 Ramasubramanian
- Follow current CyMBal design and makes use of Tube geometry (no stave approx.)
- Will need someone to continue her work

Details: CyMBal Design

Goal: Determine spatial resolutions needed to meet PID requirements

- Use projected position point vectors of projected track point (H1) and nearest DIRC hit (H2) to obtain angles:
 - Projected Point (x,y,z) hits $\rightarrow \theta_{proj}$, ϕ_{proj}
 - DIRC Point (x,y,z) hits $\rightarrow \theta_{dirc}$, ϕ_{dirc}
- 2) Use covariance matrix from ACTS CKF algorithm

Details: PID+Tracking Meeting

Geometry/Material

- Implement geometry/segmentation that better matches current detector designs
 - Input will come from MPGD-DSC about dimensions and materials

Digitization/Reconstruction

- Develop MPGD digitization algorithm use test beam data to parameterize resolution and cluster size vs. track angle
- Reconstruction of tracklets in fast detectors (MPGDs + AC-LGADs)
- □ Can track reconstruction go the other way?

Pattern recognition and angular resolution at PID

ePIC Central Detector Tracking: Crater Lake

December 14th, 2023