t reconstruction studies for DEMP events with LYSO+SiPM-on-tile ZDC

Barak Schmookler

1

Motivation

- ➢We want to identify some physics processes which we can use to study the performance of the SiPM-on-tile ZDC.
- We then would like to put the performance studies into the official ePIC physics benchmarks repository: <u>https://github.com/eic/physics_benchmarks</u>. This will allow the results to be easily reproducible for the TDR, as well as allow them to be run as part of the monthly simulation campaign.

Deep Exclusive Meson Production (DEMP)

e⁻ + p⁺ -> e⁻ + pi⁺ + n

There are some good reasons to use this process for the first set of physics studies:

- 1. Simple 3-particle final state. Electron and positive pion go into the main detector. The neutron goes into the ZDC.
- 2. Good reconstruction of the neutron angle may be needed for accurate **t** reconstruction.
- 3. Generated events from the <u>DEMPgen</u> event generator exist on S3 in HepMC3 format. These events have the IP6 crossing angle and beam smearing effects already applied

LYSO+SiPM-on-tile ZDC in the ePIC geometry

- ➤ The SiPM-on-tile ZDC detector geometry exists in the ePIC repository and is now the default ZDC configuration. ePIC PR <u>#610</u>, <u>#611</u>.
- Reconstruction has been implemented in an EICRecon branch. Pull request is under review.

Results with DEMP simulation – truth level

5x100 GeV – 10k events simulated

Neutron centered around 25 mRad (1.4 degrees), which is the proton beam direction

Results with DEMP simulation – reconstructed level

5x100 GeV – 10k events simulated

Electron and pion are reconstructed using the central detector tracker (i.e. ReconstructedChargedParticles) The neutron is reconstructed in the ZDC using the HEXPLIT algorithm: https://arxiv.org/pdf/2308.06939.pdf

5x100 GeV – 10k events simulated

Electron+Pion 4-vector:

$$t = (p_e - p_{e'} - p_{\pi})^2$$

 $p_e = (0,0,-5,5) \text{ GeV/c}$

Method 2 in <u>Probing short-range</u> <u>correlations in the deuteron via</u> <u>incoherent diffractive J/ ψ production</u> <u>with spectator tagging at the EIC</u>

Method E in <u>On the Calculation of t</u> <u>in Diffractive VM production and</u> <u>DVCS</u>

5x100 GeV – 10k events simulated

Neutron only:

$$t = (p_p - p_n)^2$$
$$p_p = 100 \times (\sin(\theta), 0, \cos(\theta), 1) \text{ GeV/c}$$

Method 1 in <u>Probing short-range</u> correlations in the deuteron via incoherent diffractive J/ψ production with spectator tagging at the EIC

Method shown on slide 3 in <u>On the</u> <u>Calculation of t in Diffractive VM</u> <u>production and DVCS</u>

5x100 GeV – 10k events simulated

Electron+Pion P_T-based

$$t = -(\overrightarrow{p_{T,e'}} + \overrightarrow{p_{T,\pi}})^2$$

We use transverse momenta defined in lab frame with respect to proton beam direction. Is this correct?

Method 3 in Probing short-range correlations in the deuteron via incoherent diffractive J/ ψ production with spectator tagging at the EIC

Method A in <u>On the Calculation of t in</u> <u>Diffractive VM production and DVCS</u>

5x100 GeV – 10k events simulated

ECCE paper (<u>here</u>) method:

 $p_{miss} = p_e + p_p - p_{e'} - p_{\pi}$ $p_e = (0,0,-5,5) \text{ GeV/c}$ $p_p = 100 \times (\sin(\theta), 0, \cos(\theta), 1) \text{ GeV/c}$

Replace the angles in p_{miss} by the reconstructed neutron angles and set the mass of the 4-momentum to the neutron mass $\rightarrow p_{neut}^{opt}$

$$t = (p_p - p_{neut}^{opt})^2$$

Some conceptual similarity to method L in <u>On the</u> <u>Calculation of t in Diffractive VM production and DVCS</u>

A ab afterburner is used 1 S3/eictest/EPIC/EVGEN/EXCLUSIVE/DEMP/5on100/eic_DEMPGen_5on100_ip6_pi+_1B_1.hepmc A ab_crossing_angle 0.025 A ab_hadron_beta_crab_hor 500000 A ab_hadron_beta_star_hor 610 A ab hadron beta star ver 55 A ab hadron divergence hor 0.000206 A ab_hadron_divergence_ver 0.000206 A ab_hadron_rms_bunch_length 70 A ab hadron rms emittance hor 2.6e-05 A ab_hadron_rms_emittance_ver 2.3e-06 A ab lepton beta crab hor 150000 A ab_lepton_beta_star_hor 780 A ab_lepton_beta_star_ver 71 A ab lepton divergence hor 0.00016 A ab_lepton_divergence_ver 0.00016 A ab lepton rms bunch length 7 A ab_lepton_rms_emittance_hor 2e-05 A ab_lepton_rms_emittance_ver 1.8e-06 A ab use beam bunch sim 1 E 0 1 5 @ -5.5270989698305503e-02 -3.4184489514529101e-03 9.2400434587506002e+00 -1.2210289059169902e+01 U GEV MM A 0 weight 0.000495402 P 1 0 11 9.3822153510404738e-04 -1.3923773484238392e-03 -4.9995943299398453e+00 4.9995946118601431e+00 5.1099999999999999e-04 4 P 2 0 2212 -2.5286097026826884e+00 2.3338502715787763e-02 9.9991886598796910e+01 1.0002785518694716e+02 9.382700000000005e-01 4 V -1 0 [1,2] @ -5.5270989698305503e-02 -3.4184489514529101e-03 9.2400434587506002e+00 -1.2210289059169902e+01 P 3 -1 11 -2.3352746752187579e+00 5.4161533649472282e-01 -4.5546191010509229e+00 5.1469778437014160e+00 5.109999999999999999e-04 1 P 4 -1 211 1.8670699700915940e+00 -4.1359670537440302e-01 5.8428628263162263e+00 6.1494253309933304e+00 1.395700000000000e-01 1 P 5 -1 2112 -2.0594704286934160e+00 -1.0607250754029605e-01 9.3704078566628965e+01 9.3731466636879958e+01 9.395700000000002e-01 1

A ab afterburner is used 1 S3/eictest/EPIC/EVGEN/EXCLUSIVE/DEMP/5on100/eic_DEMPGen_5on100_ip6_pi+_1B_1.hepmc A ab_crossing_angle 0.025 A ab_hadron_beta_crab_hor 500000 A ab hadron beta star hor 610 A ab hadron beta star ver 55 A ab hadron divergence hor 0.000206 A ab_hadron_divergence_ver 0.000206 A ab hadron rms bunch length 70 A ab hadron rms emittance hor 2.6e-05 A ab_hadron_rms_emittance_ver 2.3e-06 Incoming electron and proton beam A ab lepton beta crab hor 150000 A ab_lepton_beta_star_hor 780 with crossing angle plus energy and A ab_lepton_beta_star_ver 71 angle smearing applied. A ab lepton divergence hor 0.00016 A ab_lepton_divergence_ver 0.00016 A ab lepton rms bunch length 7 A ab_lepton_rms_emittance_hor 2e-05 A ab_lepton_rms_emittance_ver 1.8e-06 A ab use beam bunch sim 1 E 0 1 5 @ -5.5270989698305503e-02 -3.4184489514529101e-03 9.2400434587506002e+00 -1.2210289059169902e+01 U GEV MM 0 weight 0 000495402 P 1 0 11 9.3822153510404738e-04 -1.3923773484238392e-03 -4.9995943299398453e+00 4.9995946118601431e+00 5.1099999999999995e-04 2212 -2.5286097026826884e+00 2.3338502715787763e-02 9.9991886598796910e+01 1.0002785518694716e+02 9.382700000000005e-01 V -1 0 |1,2 | @ -5.5270989698305503e-02 -3.4184489514529101e-03 9.2400434587506002e+00 -1.2210289059169902e+01 P 3 -1 11 -2.3352746752187579e+00 5.4161533649472282e-01 -4.5546191010509229e+00 5.1469778437014160e+00 5.109999999999999999e-04 1 P 4 -1 211 1.8670699700915940e+00 -4.1359670537440302e-01 5.8428628263162263e+00 6.1494253309933304e+00 1.39570000000000e-01 1 P 5 -1 2112 -2.0594704286934160e+00 -1.0607250754029605e-01 9.3704078566628965e+01 9.3731466636879958e+01 9.395700000000002e-01 1

A ab afterburner is used 1 S3/eictest/EPIC/EVGEN/EXCLUSIVE/DEMP/5on100/eic_DEMPGen_5on100_ip6_pi+_1B_1.hepmc A ab_crossing_angle 0.025 A ab_hadron_beta_crab_hor 500000 A ab hadron beta star hor 610 A ab hadron beta star ver 55 A ab hadron divergence hor 0.000206 A ab_hadron_divergence_ver 0.000206 A ab hadron rms bunch length 70 A ab hadron rms emittance hor 2.6e-05 A ab_hadron_rms_emittance_ver 2.3e-06 Scattered electron, positive A ab lepton beta crab hor 150000 A ab_lepton_beta_star_hor 780 pion, and neutron A ab_lepton_beta_star_ver 71 A ab lepton divergence hor 0.00016 A ab_lepton_divergence_ver 0.00016 A ab lepton rms bunch length 7 A ab_lepton_rms_emittance_hor 2e-05 A ab_lepton_rms_emittance_ver 1.8e-06 A ab use beam bunch sim 1 E 0 1 5 @ -5.5270989698305503e-02 -3.4184489514529101e-03 9.2400434587506002e+00 -1.2210289059169902e+01 U GEV MM A 0 weight 0.000495402 P 1 0 11 9.3822153510404738e-04 -1.3923773484238392e-03 -4.9995943299398453e+00 4.9995946118601431e+00 5.1099999999999999e-04 4 P 2 0 2212 -2.5286097026826884e+00 2.3338502715787763e-02 9.9991886598796910e+01 1.0002785518694716e+02 9.382700000000005e-01 4 V -1 0 [1.2] @ -5.5270989698305503e-02 -3.4184489514529101e-03 9.2400434587506002e+00 -1.2210289059169902e+01 P 3 -1 11 -2.3352746752187579e+00 5.4161533649472282e-01 -4.5546191010509229e+00 5.1469778437014160e+00 5.109999999999999999e-04 3 P 4 -1 211 1.8670699700915940e+00 -4.1359670537440302e-01 5.8428628263162263e+00 6.1494253309933304e+00 1.395700000000000e-01 1 P 5 -1 2112 -2.0594704286934160e+00 -1.0607250754029605e-01 9.3704078566628965e+01 9.3731466636879958e+01 9.3957000000000002e-01 1

A ab afterburner is used 1 A ab_crossing_angle 0.025 A ab_hadron_beta_crab_hor 500000 A ab hadron beta star hor 610 A ab hadron beta star ver 55 A ab hadron divergence hor 0.000206 A ab_hadron_divergence_ver 0.000206 A ab hadron rms bunch length 70 A ab hadron rms emittance hor 2.6e-05 A ab_hadron_rms_emittance_ver 2.3e-06 A ab lepton beta crab hor 150000 A ab_lepton_beta_star_hor 780 A ab_lepton_beta_star_ver 71 A ab lepton divergence hor 0.00016 A ab_lepton_divergence_ver 0.00016 A ab lepton rms bunch length 7 A ab_lepton_rms_emittance_hor 2e-05 A ab_lepton_rms_emittance_ver 1.8e-06 A ab use beam bunch sim 1 U GEV MM A 0 weight 0.000495402 P 2 0

S3/eictest/EPIC/EVGEN/EXCLUSIVE/DEMP/5on100/eic_DEMPGen_5on100_ip6_pi+_1B_1.hepmc

Truth t distribution is above plots calculated using lines below:

 $t_{true} = (p_p - p_n)^2$

Weight is applied for each event

E 0 1 5 @ -5.5270989698305503e-02 -3.4184489514529101e-03 9.2400434587506002e+00 -1.2210289059169902e+01

P 5 -1 2112 -2.0594704286934160e+00 -1.0607250754029605e-01 9.3704078566628965e+01 9.3731466636879958e+01 9.3957000000000002e-01 1

Ρ 60 211 1.740320000000001e+00 1.5175799999999999e+00 4.92250999999999e+00 5.4389700889587402e+00 1.3974322769940900e-01 1

E016 U GEV MM

0

0

0

0 E Ø 1

U GEV MM

20

P 3 0

P 4

6

22 -1

Р

Р

P 3

P 4 0

P 5

P 6

P 1 0

P

HepMC files before afterburner

Two issues:

- 1. Events don't seem to match the events in the post-afterburner file. For example, the scattered electron momentum in event 1 is very different in the two files.
- 2. Trying to run the beam effects afterburner on this file causes a crash on the first event (due to no defined vertices). Can contact exclusive/diffractive/tagging group about this.

S3/eictest/EPIC/EVGEN/EXCLUSIVE/DEMP/eic DEMPGen 5on100 1B 1 100.hepmc F 0 1 6 U GEV MM 6.123230000000001e-16 0.000000000000000e+00 -5.000000000000000e+00 5.000000000000000e+00 0.00000000000000e+00 21 2212 0.000000000000000e+00 0.00000000000000e+00 1.0000000000000e+02 1.0000399 '80273438e+02 8 .5014300000000000e+00 -2.947220000000002e+00 -7.5489600000000001e-01 -3.8157 11 1.50143000000000e+00 2.947220000000002e+00 -4.2450999999999999e+00 5.3815698623657227e+00 4.7328873876336490e-03 1 P 4 2112 -7.680180000000003e-02 -2.49615000000000e-01 8.6905199999999994e+01 8.6910697937011719e+01 9.4203115329907 211 -1.424620000000000e+00 -2.69761000000001e+00 1.2339900000000e+01 1.2712100028991699e+01 1.3309124911411238e-01 1 E Ø 1 6 U GEV MM 11 6.123230000000001e-16 0.0000000000000000e+00 -5.000000000000000e+00 5.000000000000000e+00 0.00000000000000e+00 21 22 2.381279999999998e+00 1.39619000000000e+00 -6.61332000000003e-01 -1.4236100018024445e-01 -2.8349487322263309e+ 0 11 -2.3812799999999998e+00 -1.396190000000000e+00 -4.33866999999996e+00 5.1423602104187012e+00 -5.457994368537157 2112 6.40957000000000e-01 -1.2139400000000e-01 9.44162000000003e+01 9.4423103332519531e+01 9.3704755726459565e P 5 0 211 1.740320000000001e+00 1.5175799999999999e+00 4.9225099999999e+00 5.4389700889587402e+00 1.3974322769940900e-01 1

Summary

- Studies of **t** reconstruction for DEMP events with LYSO+SiPM-on-tile ZDC. Studied various reconstruction methods guided by prior work.
- Began comparison of DEMP events before and after application of the beam-effects afterburner. Some thought is needed on how beam effects are applied, and 'truth' quantities are calculated.