Activity in Korea on the Barrel Imaging Calorimeter

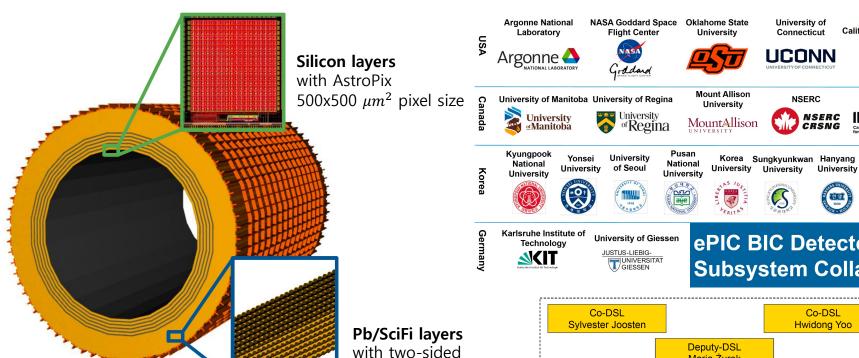
Sanghoon Lim
Pusan National University

ePIC General Meeting

Korean institutions for the BIC

University of

California Santa Cruz


Canada Fund for

Innovation

Gangneung-

Wonju National

University

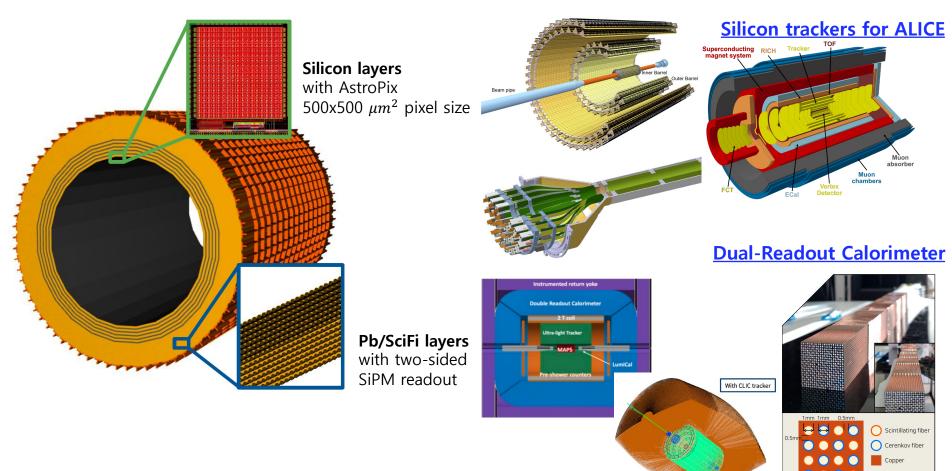
SiPM readout

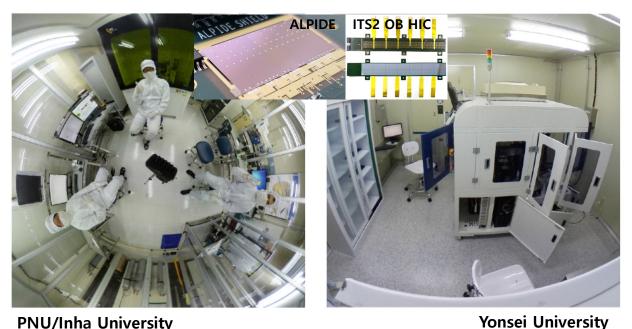
University of Giessen

JUSTUS-LIEBIGSUBSYSTEM Collaboration

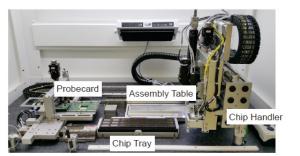
Co-DSL
Sylvester Joosten

Deputy-DSL
Maria Zurek


DSTC (Silicon)
Jessica Metcalfe

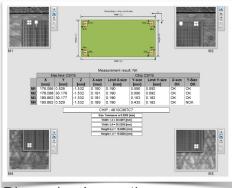

DSTC (Pb/ScFi)
Zisis Papandreou

Deputy-DSL (Silicon)
Sanghoon Lim

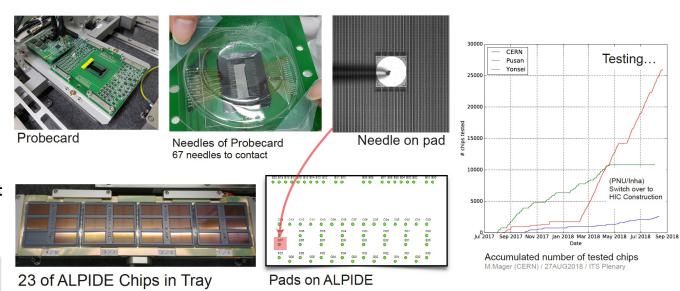

DSTC (Pb/ScFi)
Hyon-Suk Jo

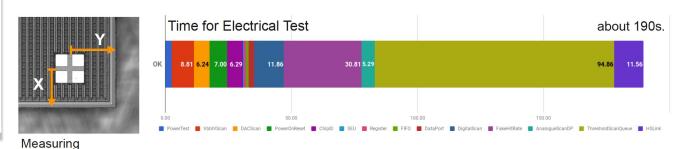
Korean institutions for the BIC

PNU/Inha University

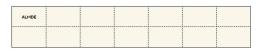


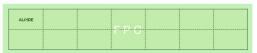
- **Design of Pixel Sensor Chip**
- **Characterization of Pixel Sensor Chip**
- **Chip production (thinning & dicing)**
- Chip test
- **Detector module production and test**


Mass chip test

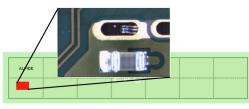

- Dimension inspection
- Electrical test
- Total test: ~5 min/chip
- Yonsei and PNU
- Note: wafer-level chip test for the BIC AstroPix

Dimensions


Dimension Inspection


HIC Production

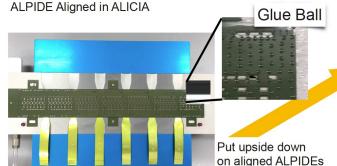
PNU (one of 5 production sites)


Aligning ALPIDEs

in Position precision < 5µm

Gluing FPC to chips

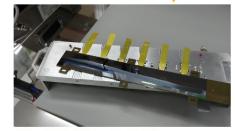
Mechanical connection



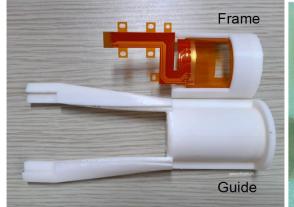
Wire-bonding

Electrical connection

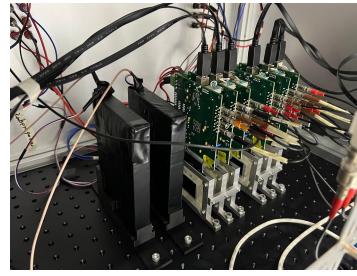
Glued FPC on Gripper

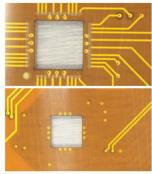


Pre-Curing in ALICIA (min.) 5 hrs


Detach HIC from ALICIA

Glue HIC (Opposite side)

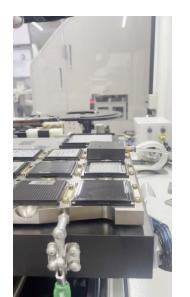

Bent chip (ALPIDE and ATPS)





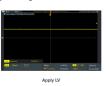
- Successfully built a telescope with 6 ALPIDE layers and just finished test beam at KEK PF-AR (1-6 GeV electron beam) on March 11-18
 - 6 ALPIDE layers + 2 APTS layers (or 1 bent ALPIDE)
 - Possibility to integrate other DUTs later (AstroPix)

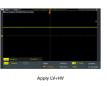
Silicon detector R&D for ALICE 3 Outer Tracker

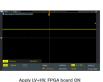

- Automatization and industrialization of module assembly
 - 60 m² of silicon sensor
 - x5 more modules (12500) than the ITS2 (2500)
 - Collaboration with a local company (MEMSPACK) for ALICE 3
 Module assembly with a multi-purpose machine die bonder

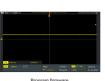
MRSI 705

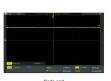
General purpose die attach machine



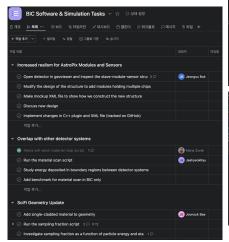

Activity & plan for the BIC

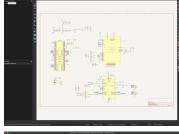

Testbench with AstroPix v2

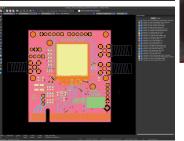

Built a testbench and performed a basic operation with charge injection



Chip test machine


- Initial discussion with C-ON Tech and NOTICE
- Based on the design files of the single-chip carrier board of AstroPix v3, a probe card design will be started in April
- Plan to make a probe card for AstroPix chip as the exact dimension of ITS2 ALPIDE to utilize the probe station



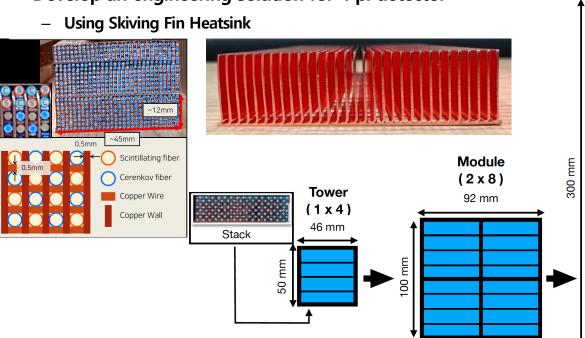

- 6 ALPIDE layers for reference tracks:
 Excellent tracking with position resolution of 5 um
- DUT (AstroPix v3 or v4):
 Position resolution and hit efficiency

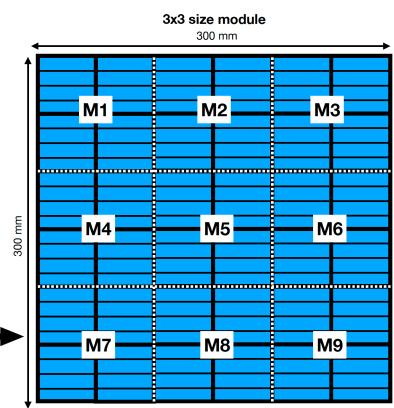
Simulation development for TDR

Detailed geometry implementation and performance study

Dual-Readout Calorimeter R&D

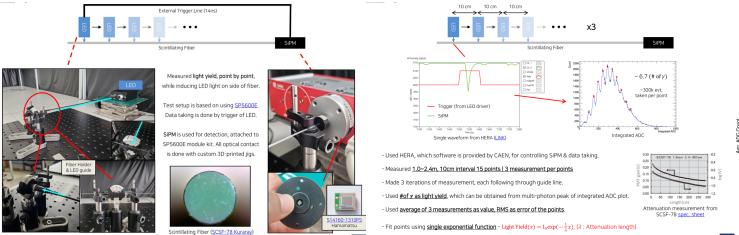
Testbeam with various module types: 2022 (CERN SPS), 2023 (CERN PS), 2024 (CERN SPS)

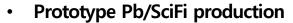




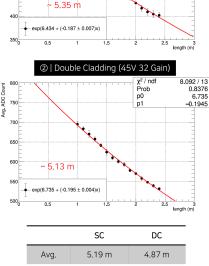
Dual-Readout Calorimeter R&D: TB2024

- Build full-size prototype module
 - Contain almost full energy of a jet
 - Achieve the goal of the jet energy resolution
- Develop an engineering solution for 4 pi detector


longitudinal length: 2500 mm



Activity & plan for the BIC


Fiber attenuation measurement

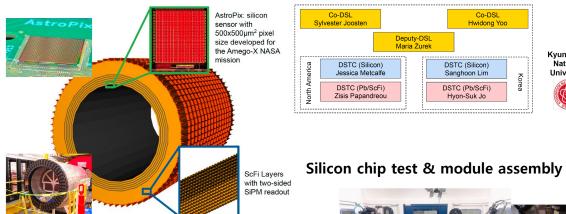
- Comparison between single and double cladding
- Under development of automated process

- A similar design to the GlueX prototype
- Under development of processing Pb layers
- Prototype can be used for further developing read-out box and testing with silicon layers

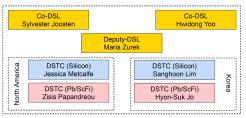
0.45 m (~9%) 0.18 m (~4%)

Measured Attenuation length

⑤ | Single Cladding (45V 32 Gain)


p0

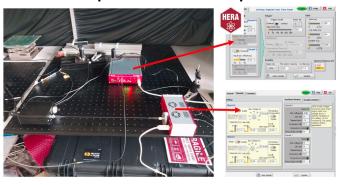
14.62 / 13 0.3317


6.434 -0.1869

Summary

- Korean BIC group aims to make a significant contribution to the construction and relevant R&D
- We are closely communicating with the Korean government for the funding of the barrel ECAL R&D and construction, and very promising progress is expected in 2024

ALICE Industry Award 2020

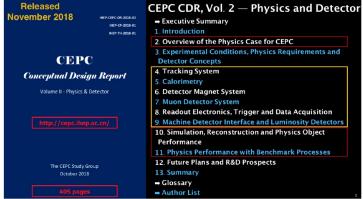


Optical fiber test setup

BACKUP

Dual-Readout Calorimeter R&D in Korea

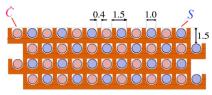
Korean team led the design of the Dual-Readout Calorimeter (DRC) for IDEA detector


HE-LHC:

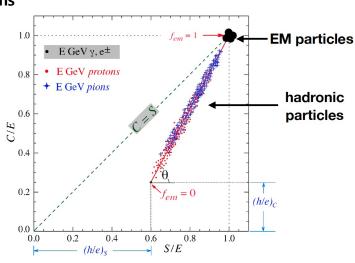
Included in the CDRs of both FCC-ee and CEPC, published at the end of 2018

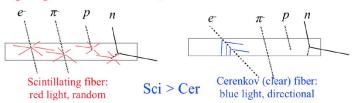
Dual-Readout Calorimeter R&D in Korea

- DRC offers high-quality energy measurement for both EM particles and hadrons
 - DRC consists of two different optical fibers (S, C) in a single component
 - The main culprit of poor hadronic energy resolution is fluctuations of the EM shower components of hadron showers (f_{em})
 - f_{em} can be determined using the measured values of scintillation and Cerenkov signals


$$S = E \left[f_{\text{em}} + \frac{1}{(e/h)_{S}} (1 - f_{\text{em}}) \right],$$

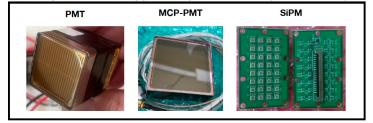
$$C = E \left[f_{\text{em}} + \frac{1}{(e/h)_{C}} (1 - f_{\text{em}}) \right],$$


$$f_{\text{em}} = \frac{(h/e)_{C} - (C/S)(h/e)_{S}}{(C/S)[1 - (h/e)_{S}] - [1 - (h/e)_{C}]}.$$


CERN RD52 experiment

Fiber pattern RD52

Signal generation: Scintillating & Cerenkov fibers

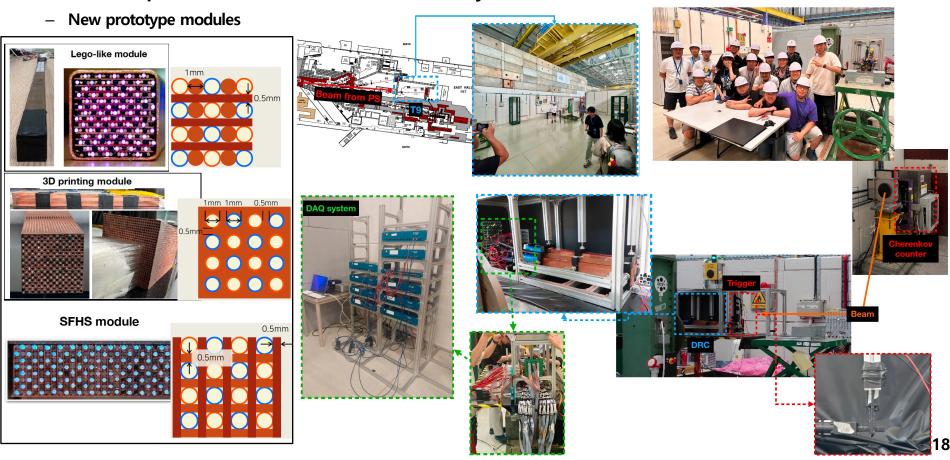

- Duration : Aug. 4th ~ 24th
- Measurement Goal

Module 1	- Shower depth - Longitudinal shower profile - Light attenuation length
י בוווחחווו	Position resolutionLateral shower profileEM energy resolutionUniformity study

• Schedule of test beam preparation

Dual-Readout Calorimeter R&D: TB2022

- Location : CERN North area (H8)
- R&D Goal
 - Readout system test (MCP-PMT & SiPM)
 - Study of various type of optical fibers (scintillation)



- Training Goal
 - Training next generation experts for DRC HW

Date	Jan Feb	Mar Apr May	Jun	Jul	Aug		
Module	Building Module (fiber+Cu)	Attach readout	Test Commissioning	Packing/ Shipping	Install @ CERN(H8)	-	
DAQ	Test Mutichannel operation			Packing/ Shipping	Install @ CERN(H8)	-	
Test beam				Packing/ Shipping	8/3 ~ install	Preparation & commissioning @ cern (~8.16)	Taking test beam (8.17~8.24)

Dual-Readout Calorimeter R&D: TB2023

Test beam experiment at T9 (CERN PS): June 28 - July 13

