

Search for $\mu^+ \rightarrow e^+ \gamma$ in the MEG II Experiment's First Physics Dataset

Dylan Palo on Behalf of the MEG II Collaboration Formerly at University of California, Irvine Presently at Fermilab

Overview

• Goal:

- Describe the MEG II experimental technique and its first physics analysis
- Discuss:
 - Theoretical background
 - Experimental overview
 - Physics analysis

2/1/2024

 $\mu \rightarrow e\gamma$ Decay

- No instance of CLFV has been observed
- e.g. $\mu \rightarrow e\gamma$ decay is possible in SM: BR is negligible ~10⁻⁵⁴; $\propto [\frac{(\Delta m_{\nu}^2)}{m_W^2}]^2$
- BTSM theories allow for CLFV and µ→eγ at higher, detectable rates
 (e.g. SUSY, BR~ 10⁻¹¹: 10⁻¹⁵)
- MEG II searches for $\mu{\rightarrow}e\gamma;$ signal would be clear indication of new physics

Charged Lepton Violating Theoretical Models

Supersymmetry

Compositeness

Heavy Neutrinos

Second Higgs Doublet

Slide originally by Bill Marciano

CLFV History

- MEG II is the latest in a long line of CLFV experimental searches with others following soon e.g. Mu3e, COMET, Mu2e
- Improvements from improved accelerators, detector technology, and experience
- The current $\mu \rightarrow e\gamma$ decay limit is 4.2x10⁻¹³ (90% CL), set by MEG I
- The MEG II collaboration aims to detect $\mu \rightarrow e\gamma$ or improve upon the sensitivity limit by ~10

Reaction	Current bound
$\mathcal{B}(\mu^+ \to e^+ \gamma)$	$< 1.2 \times 10^{-11}$
${\cal B}(\mu^\pm ightarrow { m e}^\pm { m e}^+ { m e}^-)$	$< 1.0 \times 10^{-12}$
${\cal B}(\mu^\pm o { m e}^\pm \gamma \gamma)$	$< 7.2 \times 10^{-11}$
$R(\mu^{-}\mathrm{Au} \rightarrow \mathrm{e}^{-}\mathrm{Au})$	$< 7 \times 10^{-13}$
$R(\mu^{-}Al \rightarrow e^{-}Al)$	_
${\cal B}(au^\pm o \mu^\pm \gamma)$	$< 5.9 \times 10^{-8}$
${\cal B}(\tau^\pm o e^\pm \gamma)$	$< 8.5 \times 10^{-8}$
$\mathcal{B}(\tau^{\pm} ightarrow \mu^{\pm} \mu^{+} \mu^{-})$	$<2.0 imes10^{-8}$
${\cal B}(\tau^\pm ightarrow {\rm e}^\pm {\rm e}^+ {\rm e}^-)$	$<2.6 imes 10^{-8}$
$Z^0 ightarrow e^{\pm} \mu^{\mp}$	$< 1.7 \times 10^{-6}$
$Z^0 ightarrow e^{\pm} \tau^{\mp}$	$< 9.8 \times 10^{-6}$
$Z^0 o \mu^{\pm} \tau^{\mp}$	$< 1.2 \times 10^{-5}$
$K_{\rm L}^0 ightarrow {\rm e}^{\pm} \mu^{\mp}$	$< 4.7 \times 10^{-12}$
$D^0 ightarrow {\rm e}^\pm \mu^\mp$	$< 8.1 \times 10^{-7}$
$B^0 \to e^{\pm} \mu^{\mp}$	$< 9.2 \times 10^{-8}$

Year

MEG II Experimental Overview

2/1/2024

6

Search for $\mu^+ \rightarrow e^+ \gamma$ in the MEG II Experiment's First Physics Dataset D

MEG II Experiment

- International collaboration of ~ 60 physicists
- Based at Paul Scherrer Institut located in Villigen, CH near Zurich
- Uses the PSI proton ring cyclotron
 - 590 MeV protons
 - Unbunched surface muon beam produced: Stop rate ≈ 4 × 10⁷ Hz, 28 MeV muons

2/1/2024

Search for $\mu^+ \rightarrow e^+ \gamma$ in the MEG II Experiment's First Physics Dataset Dylan Palo – University of California, Irvine

- The µ→eγ signal is a two-body decay at rest, signal e/γ have equal and opposite momentum (m_µ/2)
- Background does not have these characteristics:
 - RMD (radiative muon decay) : $\mu^+ \rightarrow \gamma \ e^+ v_{\mu} \overline{v_e}$ (small E $v_{\mu} \overline{v_e}$)
 - Accidental background: high p_{e_+} coincident with γ from RMD, AIF ($e^+ e^- \rightarrow \gamma \gamma$)
- The experiment requires precise kinematic measurements of the decay products to distinguish between signal/background decays

MEG II Experiment: Apparatus

- Stopped μ⁺ decay in target; decay products (e, γ) are measured in various detectors
- Similar design to MEG I, but all detectors have been upgraded
- Kinematic estimates at target by propagating e^+ to the target, then projecting γ to e^+ target vertex $(\Delta \theta_{e^+\gamma}, \Delta \varphi_{e^+\gamma}, \Delta t_{e^+\gamma}, E_{\gamma}, p_{e^+})$

CDCH Detector

- Upgrades:
 - New ultra-light open cell stereo drift chamber to improve efficiency and resolution
 - More track space points in drift chamber to improve resolution (1150 readout drift cells)
- The chamber was filled with He: C_4H_{10} : C_3H_8O : O_2 (88.2:9.8:1.5:0.5)

Kinematic		MEG II
Core o	MEG I	Goal
$p_{e_+}(\text{keV})$	380	130
θ_{e+}/ϕ_{e+} (mrad)	9.4 / 8.7*	5.3/3.7*
t _{e+} (ps)	70	30
z _{e+} /y _{e+} (mm)	2.4/1.2	1.6/0.7
e+ Efficiency	30	70

 ϕ_{e+} estimated at plane perpendicular to track

Search for $\mu^+ \rightarrow e^+ \gamma$ in the MEG II Experiment's First Physics Dataset

pTC Detector

- Upgrade: new design with higher hit multiplicity
- Two semi-cylindrical modules, each consisting of 256 timing counters
- Counter consists of a scintillation tile with double-sided SiPM readout
- Individual counter timing precision ~90 ps
- Signal $e_+ < N_{TC} > \sim 9$; $\sigma_{t_{e^+}} = 30 \text{ ps}$

Kinematic		MEG II
Core o	MEG I	Goal
p_{e_+} (keV)	380	130
θ_{e+}/ϕ_{e+} (mrad)	9.4 / 8.7	5.3/3.7
t _{e+} (ps)	70	30
z _{e+} /y _{e+} (mm)	2.4/1.2	1.6/0.7
e+ Efficiency	30	70

2/1/2024

LXe Detector

- One of world's largest liquid Xe detector (800 L)
- Upgrade: inner face PMTs replaced by 4092
 15x15mm² MPPCs (Multi-Pixel Photon Counters)
- Other 5 sides remain covered by PMT photon counters

Kinematic		
Core σ	MEG I	MEG II Goal
E _v (%)	2.4	1.1
$u_{\gamma}(z_{\gamma})$ (mm)	5	2.6
$v_{\gamma}(R\varphi_{\gamma})$ (mm)	5	2.2
$W_{\gamma}(R_{\gamma})$ (mm)	6	5
t _v (ps)	60	60

LXe Detector

- One of world's largest liquid Xe detector (800 L)
- Upgrade: inner face PMTs replaced by 4092
 15x15mm² MPPCs (Multi-Pixel Photon Counters)
- Other 5 sides remain covered by PMT photon counters

Kinematic		
Core σ	MEG I	MEG II Goal
E _v (%)	2.4	1.1
$u_{\gamma}(z_{\gamma})$ (mm)	5	2.6
$v_{\gamma}^{}(R \varphi_{\gamma})$ (mm)	5	2.2
$W_{\gamma}(R_{\gamma})$ (mm)	6	5
t _v (ps)	60	60

13

LXe Detector

- One of world's largest liquid Xe detector (800 L)
- Upgrade: inner face PMTs replaced by 4092
 15x15mm² MPPCs (Multi-Pixel Photon Counters)
- Other 5 sides remain covered by PMT photon counters

Kinematic		
Core σ	MEG I	MEG II Goal
E _v (%)	2.4	1.1
$u_{\gamma}(z_{\gamma})$ (mm)	5	2.6
$v_{\gamma}^{}(R \varphi_{\gamma})$ (mm)	5	2.2
$W_{\gamma}(R_{\gamma})$ (mm)	6	5
t _v (ps)	60	60

14

Target Monitoring

• Motivation:

Target 90 µm normal-displaced, $\varphi_{e^+}=45^\circ \rightarrow e^+$ path length error of 130 µm \rightarrow 1 mrad φ_e error

- One of the most dominant MEG I systematic errors
- Relative target/CDCH coordinates:
 - Optical survey of the target/CDCH + pre-installation CT scan of target shape
 - 'Hole Analysis': image holes in made in target by lack of positrons originating from the hole position – incorrect target position results in reconstructed hole position varying with angle
 - Target motion measured by analyzing photographs taken periodically during data taking analysis

Target Monitoring

• Motivation:

Target 90 µm normal-displaced, $\varphi_{e^+}=45^\circ \rightarrow e^+$ path length error of 130 µm \rightarrow 1 mrad φ_e error

- One of the most dominant MEG I systematic errors
- Relative target/CDCH coordinates:
 - Optical survey of the target/CDCH + pre-installation CT scan of target shape
 - 'Hole Analysis': image holes in made in target by lack of positrons originating from the hole position – incorrect target position results in reconstructed hole position varying with angle
 - Target motion measured by analyzing photographs taken periodically during data taking analysis

Target Monitoring

• Motivation:

Target 90 µm normal-displaced, $\varphi_{e^+}=45^{\circ} \rightarrow e^+$ path length error of 130 µm \rightarrow 1 mrad φ_e error

- One of the most dominant MEG I systematic errors
- Relative target/CDCH coordinates:
 - Optical survey of the target/CDCH + pre-installation CT scan of target shape
 - 'Hole Analysis': image holes in made in target by lack of positrons originating from the hole position – incorrect target position results in reconstructed hole position varying with angle
 - Target motion measured by analyzing photographs taken periodically during data taking analysis

RDC Detector

- RDC eliminates a fraction of RMD accidental events using LXe/RDC matched γ/e⁺
- Downstream of target only
- Remove events based on:
 - γ/e^+ relative timing (scintillator bars)
 - *e*⁺ energy (LYSO crystal calorimeter)

MEG Electronics

- All detectors use custom WaveDREAM (Waveform Domino REAdout Module) electronics boards
- O(10k) channels contain 1024 'sample-andhold' cells that sample and temporarily store detector signal (8x2 channels/board)
- After trigger, all charge is digitized via ADC
- Operated at a sampling frequency of 1.4 GHz

Ritt: https://doi.org/10.1016/j.nima.2003.11.059

MEG Trigger

- MEG Trigger Conditions:
 - LXe E_{γ} > $E_{\text{Threshold}}$ (40-45 MeV)
 - Time Match: pTC/LXe $|T_{e+/\gamma}| < 12.5$ ns
 - Spatial Match: pTC/LXe based on $\mu \rightarrow e\gamma$ decays simulated in Geant4
- Trigger rate of \sim 12 Hz at $4\times10^7\mu/s$

Search for $\mu^+ \rightarrow e^+ \gamma$ in the MEG II Experiment's First Physics Dataset

Data Analysis

- Optimizing resolutions/efficiency is critical to achieve the optimal sensitivity and ultimately detect µ→eγ
- Much of the analysis work over the last couple years focused on noise suppression, calibrations, and alignment algorithms that were critical to improve resolutions and efficiency in the 2021 dataset
- Data Analysis:
 - **Positron analysis:** CDCH+SPX waveform data $\rightarrow e^+$ kinematics
 - Photon Analysis: MPPC+PMT waveform data $\rightarrow \gamma$ kinematics
 - Target analysis: tracking target position, orientation, shape
 - RDC analysis: matching low momentum e^+ with LXe γ

Positron Analysis

- Multi-step procedure to convert the CDCH+SPX digital waveforms into positron tracks
- Examples calibrations/alignments (bolded discussed):
 - Noise suppression
 - CDCH wire-to-wire alignment
 - CDCH drift cell time-distance relationship
 - CDCH+SPX time calibrations
 - Relative CDCH/SPX detector timing
 - Magnetic field calculation/measurement

2/1/2024

CDCH Waveform Analysis: Track Measurements

- Primary CDCH measurement is the track's distance of closest approach (DOCA) to a wire
- Analysis results in measured hit time. Combine with track T0 (from pTC), yields a drift time
- Requires time-distance relationship to estimate the hit DOCA. Conventionally calculated by Garfield
- Replaced by convolutional neural network (CNN) approach offers a data-driven approach by training on tracks in MEG data
- Improves DOCA resolution, reduces DOCA bias produced by ionization statistics, and improves kinematic resolutions

CDCH Wire Alignment

- Align the wires by calculating residuals as a function of position along the wire axis
- Iteratively correct the wire by applying translations, rotations, and a wire sagitta (electrostatic)
- Improves kinematic <u>Trans</u> resolutions and biases <u>A</u> in the kinematic resolutions

Physics Analysis

- Goal: detect the $\mu^+ \rightarrow e^+ \gamma$ signal or calculate an upper-limit on BR of $\mu^+ \rightarrow e^+ \gamma$ using $E_{\gamma}, E_e, \varphi_{e\gamma}, \theta_{e\gamma}, t_{e\gamma} + (t_{RDC-LXE}, E_{RDC})$
- Two blind physics analyses discussed in next few slides:
 - Cut and count analysis (2 separate analyses)
 - Maximum likelihood analysis (2 separate analyses)
- Common requirements:
 - Calibrations, alignments, noise suppression
 - Positron/photon selection
 - Kinematic resolution estimates
 - Correlations between kinematics
 - Both opt to include event-by-event information
 - Estimates of background rates/distributions

- Will highlight some of the datadriven kinematic resolution estimate approaches for the CDCH, pTC, and LXe detectors
- Optimal resolutions are required to suppress the background

Positron Resolution

- Data-driven e^+ kinematic resolution estimate compares two independently measured/fit turns on a single e^+ track: double turn analysis
- Compare kinematics at a common plane between the turns

Double Turn Analysis

- Turn kinematic comparison at target plane
- $\sigma_{\Delta A}^2 = \sigma_{Turn\,2}^2 + \sigma_{Turn\,1}^2$
- Fit to convolution of two double gaussians
- Yields quality estimate of the core/tail resolution that only requires minor MC corrections

- Resolutions measured with double turn analysis (DT) are all improved with respect to MEG I and close to goal
- Improving single hit resolution, magnetic field map, etc. aim to achieve the MEG II goal resolutions

			3• 10 ⁷ µ/s
Kinematic	MEG I	MEG II	MEG II 2021
Resolution	Core σ	Goal	DT Core σ
		Core σ	
$p_{e_+}(\text{keV})$	380	130**	97
$\theta_{e+}/\phi_{e+}^{*}(mrad)$	9.4/8.7	5.3/3.7	7.2/4.1
z _{e+} /y _{e+} (mm)	2.4/1.2	1.6/0.7	2.0/0.7

*φ_{e+} estimated at plane perpendicular to track, includes correlations **based on early CDCH track fitting algorithms

XEC Resolutions

Search for $\mu^+ \rightarrow e^+ \gamma$ in the MEG II Experiment's First Physics Dataset

- Use non-accidental RMD e^+/γ pairs at standard beam intensity to estimate $\sigma_{t_{e^+\gamma}}$
- Direct measurement of $\sigma_{t_{e^+\gamma}}$
- Signal e^+ contains ~9 N_{TC} . For events with 9 N_{TC} , $\sigma_{t_{e^+\gamma}}$ ~78 ps
- Comparable to MEG II goal of 84 ps

- Tools to estimate background rates/distributions in the signal region
- Time sideband:
 - Signal region offset in $t_{e^+\gamma}$
 - Estimate N_{ACC} in signal region
 - Calculate distribution of accidentals (e.g. E_{γ}, p_e) expected in the signal region
- Energy sideband:
 - Signal region shifted to lower E_{γ}
 - Estimate N_{RMD} in signal region; found to be completely negligible
- Toy MC:
 - Use resolutions and sideband results to generate many toy MC "experiments"
 - Toy MC experiments contain expected accidental distributions: used to calculate the upper-limit in the absence of signal

Probability Density Functions

 Using kinematic resolutions and sideband information we build signal and accidentals PDFs (graphic shows equal weighting)

- Maximum likelihood analysis (MLA) uses the signal/background PDFs to fit for *N*_{SIG}, *N*_{ACC}, *N*_{RMD}, *X*_{TGT}
- Extended Likelihood function:

 $L(\vec{\theta}) = \frac{e^{-N}N^n}{n!} \prod_{i=1}^n p(\vec{x_i}; \vec{\theta})$ $L(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{Acc}}, X_{\text{TGT}})$ $:= \exp\left(-\frac{(X_{\text{TGT}})^2}{2\sigma_{\text{TGT}}^2}\right)$ Nuisance Parameters

• Applying the MLA to toy MC in the absence of signal, we estimate a median upper-limit on N_{SIG} of 2.21 at the 90% CL

- Cut and count analysis (CCA): define a signal region and count the number of events inside (N_{SIG}). No RDC used
- The analysis region is defined by a hyperradius ($r_H < 3.45$):

$$r_H = \sqrt{\left(\frac{t_{e\gamma}}{\sigma_{t_{e\gamma}}}\right)^2 + \left(\frac{\phi_{e\gamma}}{\sigma_{\phi_{e\gamma}}}\right)^2 + \left(\frac{\theta_{e\gamma}}{\sigma_{\theta_{e\gamma}}}\right)^2 + \left(\frac{\left(\frac{m_\mu}{2} - \alpha\right) - p_e}{\sigma_{p_e}}\right)^2 + \left(\frac{\left(\frac{m_\mu}{2} - \beta\right) - E_\gamma}{\sigma_{E\gamma}}\right)^2}$$

- Calculate $\langle N_{ACC} \rangle$ in signal region using time sidebands and toy MC: $\langle N_{ACC} \rangle = 0.61$ events
- The median/mode toy MC experiment results in zero events
- Using the Feldman Cousins approach, this null signal would result in an UL on N of 1.8 at the 90% CL, but a lower signal efficiency (of 2.95 at the 90% CL)

- In either physics analysis, to convert the upper-limit on N into a branching fraction of $\mu^+ \rightarrow e^+\gamma$, we require the number of μ^+ observed in our dataset, N_{μ}
- *Single event sensitivity is the branching fraction that would result in 1 signal event in the dataset i.e., $1/N_{\mu}$
- Measure N_{μ} using two techniques:
 - Measure the number of positrons reconstructed in a trigger requiring only an SPX hit:

$$N_{\mu} = N_{e\nu\overline{\nu}} \cdot P_{e\nu\overline{\nu}} \cdot \frac{1}{f(e\nu\overline{\nu},*)} \cdot \frac{\epsilon_{TRG}^{e\gamma}}{\epsilon_{TRG}^{e\nu\overline{\nu}}} \cdot \frac{\epsilon_{e}^{e\gamma}}{\epsilon_{e}^{e\nu\overline{\nu}}} \cdot A_{e\gamma} \cdot \epsilon_{\gamma}^{e\gamma} \cdot \epsilon_{SEL}^{e\gamma}$$

• Measure the number of RMD events in the physics trigger sample ($45 < E_{\gamma}$ 48 MeV):

$$N_{\mu} = N_{e\nu\overline{\nu}\gamma} \cdot \frac{1}{B(e\nu\overline{\nu}\gamma, *)} \cdot \frac{\epsilon_{TRG}^{e\gamma}}{\epsilon_{TRG}^{e\nu\overline{\nu}\gamma}} \cdot \frac{\epsilon_{e}^{e\gamma}}{\epsilon_{e}^{e\nu\overline{\nu}\gamma}} \cdot \frac{\epsilon_{\gamma}^{e\gamma}}{\epsilon_{\gamma}^{e\nu\overline{\nu}\gamma}} \cdot \frac{\epsilon_{SEL}^{e\gamma}}{\epsilon_{SEL}^{e\nu\overline{\nu}\gamma}}$$

- Both require acceptance and efficiency terms estimated from a variety of sources e.g. calibration data, alternate trigger data, Monte Carlo, etc.
- Normalization measurements agree within 2σ
- Normalization of MLA is 2.64•10¹², CCA is 1.98•10¹² due to a lower signal efficiency

Sensitivity From Toy MC

- 'Sensitivity' is median toy MC upper-limit in the absence of signal:
 upper-limit on N_{SIG} divided by the normalization, N_µ: UL_{NSIG} /N_µ
- This is the median upper-limit we expect to set in the absence of signal
- MEG II 2021 dataset sensitivity approaches that of MEG I
- Projects to reach its goal sensitivity by end of MEG II lifetime

Dataset	Sensitivity (10^{-13})	Single Event Sensitivity (10 ⁻¹³)
MEG I Sensitivity	5.3	0.58
MEG II 2021 Sensitivity CCA	9.3	5.0
MEG II 2021 Sensitivity MLA	8.8	3.8

Signal Region

- The CCA resulted in a null signal therefore resulting in an upper-limit of $9.3*10^{-13}$
- The MLA resulted in an upper-limit on N_{SIG} of 1.98 i.e., an upper-limit of 7.5*10⁻¹³ NLL is comparable to that of toy MC
- Both results are in good agreement with the toy MC experiments (close to median)

Search for $\mu^+ \rightarrow e^+ \gamma$ in the MEG II Experiment's First Physics Dataset

Signal Region

- The CCA resulted in a null signal therefore resulting in an upper-limit of $9.3*10^{-13}$
- The MLA resulted in an upper-limit on N_{SIG} of 1.98 i.e., an upper-limit of 7.5*10⁻¹³ NLL is comparable to that of toy MC
- The top ranked events from the CCA are shown below. Good agreement between the top ranked MLA and CCA events

Run #	Event #	$\theta_{e\gamma} \text{ [mrad]}$	$\phi_{e\gamma} \text{ [mrad]}$	$E_e \; [{\rm MeV}]$	$E_{\gamma} [\text{MeV}]$	$t_{e\gamma}[ns]$	r_H	MLA Rank	
402458	22	1.3	3.4	52.69	49.51	0.14	4.2	2	
401563	1286	-27.7	-2.2	52.97	51.95	-0.11	4.2	1	
403059	2406	-13.3	-1.4	52.74	52.01	-0.29	4.3	3	
405800	1663	5.2	-31.1	52.67	49.63	-0.06	4.6	- +	In-time RDC hit;
401603	2718	24.0	-22.8	52.77	49.19	-0.10	4.9	5	Not used in CCA
405442	9	-30.3	9.9	52.77	49.72	-0.04	4.9	4	
401221	892	-14.7	8.7	52.74	49.27	-0.25	5.1	11	
401611	2589	-13.5	-0.1	52.74	48.77	0.21	5.1	9	
406530	570	9.6	19.6	52.79	49.98	0.21	5.1	13	
402692	2734	32.0	-21.8	52.53	51.75	-0.11	5.3	7	
-	Typical σ	9	7	0.1	1.1	0.08	-	_	
-	Signal	0	0	52.82	52.83	0	-	-	

2/1/2024

MEG II Current Status

- Figure shows the effective number of muons accumulated for
 2021-2023
- Accumulated data is already 9x that of the 2021 result
- The sensitivity after the full 2023 run (December) should approach the goal of the MEG II experiment, expected to reach a sensitivity of $\sim 9*10^{-14}$

Conclusions

- MEG II collaboration has come a long way in the last few years. In the 2020 engineering run, the drift chamber experienced high currents and only a small fraction of the electronics were available
- In the 2021 physics run, the experiment achieved resolutions comparable to the MEG II design
- Now the 2021-2023 dataset is expected to achieve the most stringent limit on the CLFV µ→eγ decay or detect a signal
- Will continue optimizing for 2022,2023 physics analysis. Focus on shortcomings:
 - Optimize the magnetic field calculation/measurements
 - Alternative LXe energy calculations
 - Alternative CDCH track finders
- Physics paper, Operations paper

Thanks for listening! Questions?

43 2/1/2024

Search for $\mu^+ \rightarrow e^+ \gamma$ in the MEG II Experiment's First Physics Dataset

$$\begin{split} N_{e\nu\overline{\nu}} &= \frac{N_{e\nu\overline{\nu}}^{\mu}}{P_{e\nu\overline{\nu}}} \cdot \mathcal{B}_{e\nu\overline{\nu}} \cdot f_{e\nu\overline{\nu},*} \cdot T_{e\nu\overline{\nu}} \cdot \epsilon_{TRG}^{e\nu\overline{\nu}} \cdot \epsilon_{e}^{e\nu\overline{\nu}} \\ N_{e\gamma} &= \frac{N_{e\gamma}^{\mu}}{P_{e\gamma}} \cdot \mathcal{B}_{e\gamma} \cdot T_{e\gamma} \cdot \epsilon_{TRG}^{e\gamma} \cdot \epsilon_{e}^{e\gamma} \cdot A_{e\gamma}^{\gamma} \cdot \epsilon_{\gamma}^{e\gamma} \cdot \epsilon_{SEL}^{e\gamma} \\ \frac{\mathcal{B}_{e\gamma}}{\mathcal{B}_{e\nu\overline{\nu}}} &= \frac{N_{e\gamma}}{N_{e\nu\overline{\nu}}} \cdot \frac{f_{e\nu\overline{\nu},*}}{P_{e\nu\overline{\nu}}} \cdot \frac{\epsilon_{TRG}^{e\nu\overline{\nu}}}{\epsilon_{TRG}^{e\gamma}} \cdot \frac{\epsilon_{e}^{e\nu\overline{\nu}}}{\epsilon_{e}^{e\gamma}} \cdot \frac{1}{A_{e\gamma}^{2\gamma}} \cdot \frac{1}{\epsilon_{\gamma}^{e\gamma}} \cdot \frac{1}{\epsilon_{SEL}^{e\gamma}} \\ SES &= \frac{1}{N_{e\nu\overline{\nu}}} \cdot \frac{f_{e\nu\overline{\nu},*}}{P_{e\nu\overline{\nu}}} \cdot \frac{\epsilon_{TRG}^{e\nu\overline{\nu}}}{\epsilon_{TRG}^{e\gamma}} \cdot \frac{\epsilon_{e}^{e\nu\overline{\nu}}}{\epsilon_{e}^{e\gamma}} \cdot \frac{1}{A_{e\gamma}^{2\gamma}} \cdot \frac{1}{\epsilon_{\gamma}^{e\gamma}} \cdot \frac{1}{\epsilon_{SEL}^{e\gamma}} \\ N_{\mu} &= N_{e\nu\overline{\nu}} \cdot \frac{P_{e\nu\overline{\nu}}}{f_{e\nu\overline{\nu},*}} \cdot \frac{\epsilon_{TRG}^{e\gamma}}{\epsilon_{TRG}^{e\nu\overline{\nu}}} \cdot \frac{\epsilon_{e}^{e\gamma}}{\epsilon_{e}^{e\gamma}} \cdot A_{e\gamma}^{2\gamma} \cdot \epsilon_{\gamma}^{e\gamma} \cdot \epsilon_{SEL}^{e\gamma} \end{split}$$

Backup: Beamline

Figure 4 MEG Beam line with the π E5 channel and MEG detector system incorporated in and around the COBRA magnet.

Backup: XEC QE

- Anneal MPPCs every year in order to recover MPPC quantum efficiency
- Quantum efficiency degrades with beam exposure
- Likely related to removing a protective coating, removed to absorb VUV light on MPPCs
- Anneal using Joule method: i.e. applying high current

Degradation speed ~0.08%/hour

Backup: Camera Analysis

- Expect target motion on a short time scale e.g., following target insertions/extractions (LXe calibrations)
- ~120 dots printed on target surface; imaged by photographic camera ~1.2 m from target
- Image analysis code measures dot coordinates on the CCD
- Fit for the 3D target position, rotation, shape using projection equations: $X_{CCD} = \frac{f * X_{CAM}}{Z_{CAM} f}$

• Analysis requires relative CDCH-target position

- Three optical corner cubes on the target frame
- Optical survey provides the corner position in relative to detectors (CDCH,LXe, etc.)
- Target CT scan provides the relative coordinates of the target foil/corner cubes in a nominal coordinates system
- Combination yields the relative position of the target foil with respect to the detectors at the time of the survey

- Rigid body 6-parameter transformation: survey→ MEG data start (0→1000 h)
- ~600 µm shifts normal to the target surface: cos(15°)X_{MEG} + sin(15°)Z_{MEG}
- Unknown origin, but significant work in area
- Reminder:

600 μ m \rightarrow ~7 mrad φ_e error

 Small shifts of ~ 50 µm with insertions/extractions

Backup: Target Shape

- CT scan and camera analysis shape agree within ~50 µm at all points on the surface
- Implement target into MEG analysis framework by tessellating the deformation into an array of triangular faces
- Propagate positrons to tessellation

Backup: pTC Time Resolution

EvenOdd-hit3

(eventime - oddtime)/2 [ns

(eventime - oddtime)/2 [ns

12 hits

- pTC σ_{t_e+} estimated by comparing time of even/odd ordered hits in the same "cluster" of SPX hits
- Fit for $\sigma_{t_{e^+}}(N_{TC}) = \frac{112}{\sqrt{N_{TC}}}$
- Signal $e^+ < N_{TC} > \sim 9$

Dylan Palo – University of California, Irvine

-0.2

-0.4

2/1/2024

Positron Analysis

52 2/1/2024

Search for $\mu^+ \rightarrow e^+ \gamma$ in the MEG II Experiment's First Physics Dataset D

Physics Analysis

- Goal: detect the $\mu^+ \rightarrow e^+ \gamma$ signal or calculate an upper-limit on BR of $\mu^+ \rightarrow e^+ \gamma$ using $E_{\gamma}, E_e, \varphi_{e\gamma}, \theta_{e\gamma}, t_{e\gamma} + (t_{RDC-LXE}, E_{RDC})$
- Two blind physics analyses discussed in next few slides:
 - Cut and count analysis (2 separate analyses)
 - Maximum likelihood analysis (2 separate analyses)
- Common requirements:
 - Calibrations, alignments, noise suppression
 - Positron/photon selection
 - Kinematic resolution estimates
 - Correlations between kinematics
 - Both opt to include event-by-event information
 - Estimates of background rates/distributions

Backup: Positron Kinematic Correlations 🚄

- The double turn analysis also extracts correlations between kinematic variables
- Some are not accessible in the data and thus rely on MC
- Correlations:

$$\begin{split} \delta\phi &= [p_0^{\phi} + p_1^{\phi} \cdot tan(\phi)] \cdot \delta E * \\ \delta Y &= p_0^Y + p_1^Y \cdot \delta E * \\ \delta Z &= [p_2^Z + p_3^Z \cdot cot(\theta)] \cdot \delta E * \\ \delta Z &= p_0^Z + p_1^Z \cdot \delta \theta \\ \delta\phi &= [p_5^{\phi} + p_6^{\phi} \cdot \phi + p_7^{\phi} \cdot \phi^2] \cdot \delta Z * \\ \delta\phi &= [p_2^{\phi} + p_3^{\phi} \cdot \phi + p_4^{\phi} \cdot \phi^2] \cdot \delta\theta \end{split}$$

54

Search for $\mu^+ \rightarrow e^+ \gamma$ in the MEG II Experiment's First Physics Dataset Dy

- Model-independent effective Lagrangian with two types of theoretical models
- If (e.g. SUSY, $\kappa{<}{<}1)$: BR($\mu \rightarrow e\gamma) \sim$ BR($\mu N \rightarrow eN)/\alpha$
- If (e.g. leptoquarks, κ >>1): $\mu N \rightarrow e N$ is at tree level and $\mu \rightarrow e \gamma$ is at loop level
- Mu2e reaches far lower sensitivities in the quarklepton coupling models
- MEG II and Mu2e are synergetic: in κ<<1 models the two will have a comparable sensitivity (if MEG II sees a signal, Mu2e should too)

Process		Energy	Main Purpose	Frequency
Cosmic rays	μ^{\pm} from atmospheric showers	Wide spectrum O(GeV)	LXe–CDCH relative position	Annually On demand
Charge exchange	$\pi^- p \rightarrow \pi^0 n$ $\pi^0 \rightarrow \gamma \gamma$	55, 83, 129 MeV photons	LXe energy scale/resolution	Annually
Radiative μ -decay	$\mu^+ \to e^+ \nu \bar{\nu} \gamma$	Photons >40 MeV, Positrons >45 MeV	LXe-pTC relative timing	Continuously
Proton accelerator	${}^{7}\text{Li}(\mathbf{p}, \gamma)^{8}\text{Be}$ ${}^{11}\text{B}(\mathbf{p}, \gamma)^{12}\text{C}$	14.8, 17.6 MeV photons 4.4, 11.6, 16.1 MeV photons	LXe uniformity/purity LXe_pTC timing	Weekly Weekly
Neutron generator	58 Ni(n, γ) 59 Ni	9 MeV photons	LXe energy scale	Weekly
Radioactive source	241 Am $(\alpha, \gamma)^{237}$ Np	5.5 MeV α 's	LXe PMT/SiPM calibration LXe purity	Weekly
Radioactive source	${}^{9}\text{Be}(\alpha_{241}\text{Am}, n)^{12}\text{C}^{\star}$ ${}^{12}\text{C}^{\star}(\gamma)^{12}\text{C}$	4.4 MeV photons	LXe energy scale	On demand
Radioactive source LED	$^{57}\mathrm{Co(EC, \gamma)^{57}Fe}$	136 (11 %), 122 keV (86 %) X-rays UV region	LXe–spectrometer alignment LXe PMT/SiPM calibration	Annually Continuously

- Observed low frequency noise on the CDCH waveforms coherent over entire electronics chips
- Developed algorithms to suppress noise by averaging the voltage bin-by-bin/chip away from signals
- Noise suppression is critical to improving hit efficiency and improving track space-point measurements

