

Search for μ^+ \rightarrow e $^+$ y in the MEG II Experiment's First Physics Dataset

Dylan Palo on Behalf of the MEG II Collaboration Formerly at University of California, Irvine Presently at Fermilab

Overview

- Goal:
	- Describe the MEG II experimental technique and its first physics analysis
- Discuss:

2

- Theoretical background
- Experimental overview
- Physics analysis

μ→eγ Decay

- No instance of CLFV has been observed
- e.g. $\mu \rightarrow e\gamma$ decay is possible in SM: **BR** is negligible ~ 10^{-54} ; \propto $\left[\frac{(\Delta m_V^2)}{m^2}\right]$ $\frac{(\Delta m_{\tilde \nu}^2)}{m_W^2}]^2$
- BTSM theories allow for CLFV and $\mu \rightarrow e\gamma$ at higher, detectable rates (e.g. SUSY, BR $\sim 10^{-11}$: 10⁻¹⁵)
- **MEG II searches for μ**→**eγ; signal would be clear indication of new physics**

Charged Lepton Violating Theoretical Models

Supersymmetry **Compositeness** Compositeness **Leptoquark**

Heavy Neutrinos Second Higgs Doublet Heavy Z' Anomal. Z Coupling

Slide originally by Bill Marciano

CLFV History

- MEG II is the latest in a long line of CLFV experimental searches with others following soon e.g. Mu3e, COMET, Mu2e
- Improvements from improved accelerators, detector technology, and experience
- The current $\mu \rightarrow e\gamma$ decay limit is 4.2x10−13 (90% CL), set by MEG I
- **The MEG II collaboration aims to detect μ**→**eγ or improve upon the sensitivity limit by ~10**

MEG II Experimental Overview

6

2/1/2024 Search for $\mu^+\to e^+\gamma$ in the MEG II Experiment's First Physics Dataset | Dylan Palo – University of California, Irvine

MEG II Experiment

- International collaboration of ~ 60 physicists
- Based at Paul Scherrer Institut located in Villigen, CH near Zurich
- Uses the PSI proton ring cyclotron
	- 590 MeV protons
	- Unbunched surface muon beam produced: Stop rate $\approx 4 \times 10^7$ Hz, 28 MeV muons

PSI

ETHZ

7

- The $\mu \rightarrow e\gamma$ signal is a two-body decay at rest, signal e/γ have equal and opposite momentum $(m_\mu/2)$
- Background does not have these characteristics:
	- RMD (radiative muon decay) **:** μ^+ → $\gamma e^+v_\mu \overline{v_e}$ (small E $v_\mu \overline{v_e}$)
	- **Accidental background**: high $p_{e_{+}}$ coincident with γ from RMD, AIF $(e^+ e^- \rightarrow \gamma \gamma)$
- **The experiment requires precise kinematic measurements of the decay products** to distinguish between signal/background decays

MEG II Experiment: Apparatus

- Stopped μ^+ decay in target; decay products (e, γ) are measured in various detectors
- Similar design to MEG I, but all detectors have been upgraded
- Kinematic estimates at target by propagating e^+ to the target, then projecting γ to e^+ target vertex $(\Delta \theta_{e^+ \gamma}, \Delta \varphi_{e^+ \gamma}, \Delta t_{e^+ \gamma}, E_{\gamma}, p_{e^+})$

CDCH Detector

- Upgrades:
	- New ultra-light open cell stereo drift chamber to improve efficiency and resolution
	- More track space points in drift chamber to improve resolution (1150 readout drift cells)
- The chamber was filled with He: C_4H_{10} : C_3H_8O : O_2 (88.2:9.8:1.5:0.5)

 ${}^{\star}\mathsf{\phi}_{\mathsf{e}\mathsf{+}}$ estimated at plane perpendicular to track

2/1/2024 Search for $\mu^+\to e^+\gamma$ in the MEG II Experiment's First Physics Dataset | Dylan Palo – University of California, Irvine

pTC Detector

- Upgrade: new design with higher hit multiplicity
- Two semi-cylindrical modules, each consisting of 256 timing counters
- Counter consists of a scintillation tile with double-sided SiPM readout
- Individual counter timing precision \sim 90 ps
- Signal $e_+ < N_{TC}$ > ~9; $\sigma_{t_{e^+}}$ $=$ 30 ps

LXe Detector

- One of world's largest liquid Xe detector (800 L)
- Upgrade: inner face PMTs replaced by 4092 15x15mm² MPPCs (Multi-Pixel Photon Counters)
- Other 5 sides remain covered by PMT photon counters

LXe Detector

- One of world's largest liquid Xe detector (800 L)
- Upgrade: inner face PMTs replaced by 4092 15x15mm² MPPCs (Multi-Pixel Photon Counters)
- Other 5 sides remain covered by PMT photon counters

LXe Detector

- One of world's largest liquid Xe detector (800 L)
- Upgrade: inner face PMTs replaced by 4092 15x15mm² MPPCs (Multi-Pixel Photon Counters)
- Other 5 sides remain covered by PMT photon counters

Target Monitoring

• Motivation:

Target 90 μm normal-displaced, φ $_{e}$ +=45° \rightarrow e^+ path length error of 130 µm \rightarrow 1 mrad φ_e error

- **One of the most dominant MEG I systematic errors**
- Relative target/CDCH coordinates:
	- Optical survey of the target/CDCH $+$ pre-installation CT scan of target shape
	- Hole Analysis': image holes in made in target by lack of positrons originating from the hole position – incorrect target position results in reconstructed hole position varying with angle
	- Target motion measured by analyzing photographs taken periodically during data taking analysis

Target Monitoring

• Motivation:

Target 90 μm normal-displaced, φ $_{e}$ +=45° \rightarrow

- e^+ path length error of 130 µm \rightarrow 1 mrad φ_e error
- **One of the most dominant MEG I systematic errors**
- Relative target/CDCH coordinates:
	- Optical survey of the target/CDCH $+$ pre-installation CT scan of target shape
	- **'Hole Analysis': image holes in made in target by lack of positrons originating from the hole position – incorrect target position results in reconstructed hole position varying with angle**
	- Target motion measured by analyzing photographs taken periodically during data taking analysis

Target Monitoring

• Motivation:

Target 90 μm normal-displaced, φ $_{e}$ +=45° \rightarrow e^+ path length error of 130 µm \rightarrow 1 mrad φ_e error

- **One of the most dominant MEG I systematic errors**
- Relative target/CDCH coordinates:
	- Optical survey of the target/CDCH $+$ pre-installation CT scan of target shape
	- Hole Analysis': image holes in made in target by lack of positrons originating from the hole position – incorrect target position results in reconstructed hole position varying with angle
	- **Target motion measured by analyzing photographs taken periodically during data taking analysis**

RDC Detector

- RDC eliminates a fraction of RMD accidental events using LXe/RDC matched γ/e^+
- Downstream of target only
- Remove events based on:
	- γ/e^+ relative timing (scintillator bars)
	- \cdot e^+ energy (LYSO crystal calorimeter)

MEG Electronics

- All detectors use custom WaveDREAM (Waveform Domino REAdout Module) electronics boards
- O(10k) channels contain 1024 'sample-andhold' cells that sample and temporarily store detector signal (8x2 channels/board)
- After trigger, all charge is digitized via ADC
- Operated at a sampling frequency of 1.4 GHz

Ritt:<https://doi.org/10.1016/j.nima.2003.11.059>

MEG Trigger

- MEG Trigger Conditions:
	- LXe E_{γ} > $E_{\text{Threshold}}$ (40-45 MeV)
	- Time Match: pTC/LXe $|T_{e+/\gamma}| < 12.5$ ns
	- Spatial Match: pTC/LXe based on μ→eγ decays simulated in Geant4
- Trigger rate of ∼ 12 Hz at 4×10^7 µ/s

2/1/2024 Search for $\mu^+\to e^+\gamma$ in the MEG II Experiment's First Physics Dataset | Dylan Palo – University of California, Irvine

Data Analysis

- **Optimizing resolutions/efficiency is critical to achieve the optimal sensitivity and ultimately detect μ**→**eγ**
- Much of the analysis work over the last couple years focused on noise suppression, calibrations, and alignment algorithms that were critical to improve resolutions and efficiency in the 2021 dataset
- Data Analysis:
	- **Positron analysis:** CDCH+SPX waveform data $\rightarrow e^+$ kinematics
	- Photon Analysis: MPPC+PMT waveform data → γ kinematics
	- Target analysis: tracking target position, orientation, shape
	- RDC analysis: matching low momentum e^+ with LXe γ

Positron Analysis

- Multi-step procedure to convert the CDCH+SPX digital waveforms into positron tracks
- Examples calibrations/alignments (bolded discussed):
	- Noise suppression
	- **CDCH wire-to-wire alignment**
	- **CDCH drift cell time-distance relationship**
	- CDCH+SPX time calibrations
	- Relative CDCH/SPX detector timing
	- Magnetic field calculation/measurement

CDCH Waveform Analysis: Track Measurements

- Primary CDCH measurement is the track's distance of closest approach (DOCA) to a wire
- Analysis results in measured hit time. Combine with track T0 (from pTC), yields a drift time
- **Requires time-distance relationship to estimate the hit DOCA.** Conventionally calculated by Garfield
- Replaced by convolutional neural network (CNN) approach offers a data-driven approach by training on tracks in MEG data
- Improves DOCA resolution, reduces DOCA bias produced by ionization statistics, and improves kinematic resolutions

CDCH Wire Alignment

- Align the wires by calculating residuals as a function of position along the wire axis
- Iteratively correct the wire by applying translations, rotations, and a wire sagitta (electrostatic)
- Improves kinematic resolutions and biases in the kinematic resolutions

Physics Analysis

- **Goal: detect the** $\mu^+ \rightarrow e^+ \gamma$ **signal or** calculate an upper-limit on BR of $\mu^+ \rightarrow e^+ \gamma$ using $E_\gamma, E_e, \varphi_{e\gamma}, \theta_{e\gamma}, t_{e\gamma} + (t_{RDC-LXE}, E_{RDC})$
- Two **blind** physics analyses discussed in next few slides:
	- Cut and count analysis (2 separate analyses)
	- Maximum likelihood analysis (2 separate analyses)
- Common requirements:
	- **Calibrations, alignments, noise suppression**
	- **Positron/photon selection**
	- **Kinematic resolution estimates**
	- Correlations between kinematics
	- Both opt to include event-by-event information
	- **Estimates of background rates/distributions**

- Will highlight some of the datadriven kinematic resolution estimate approaches for the CDCH, pTC, and LXe detectors
- Optimal resolutions are required to suppress the background

Positron Resolution

- Data-driven e^+ kinematic resolution estimate compares two independently measured/fit turns on a single e^+ track: double turn analysis
- Compare kinematics at a common plane between the turns

Double Turn Analysis

- Turn kinematic comparison at target plane
- $\sigma_{\Delta A}^2 = \sigma_{Turn\,2}^2 + \sigma_{Turn\,1}^2$
- Fit to convolution of two double gaussians
- Yields quality estimate

of the eare/toil of the core/tail resolution that only requires minor MC corrections

to track, smaller φ_{e+} is at $|\varphi_{\scriptscriptstyle{\text{e+}}}|\!<$ 0.2 rad

 $12.107...$

- Resolutions measured with double turn analysis (DT) are all improved with respect to MEG I and close to goal
- Improving single hit resolution, magnetic field map, etc. aim to achieve the MEG II goal resolutions

 $\phi_{\rm e+}$ estimated at plane perpendicular to track, includes correlations **based on early CDCH track fitting algorithms

XEC Resolutions

- Use non-accidental RMD e^+ / γ pairs at standard beam intensity to estimate $\mathit{\sigma_{t}}_{e^+ \gamma}$
- Direct measurement of $\sigma_{t_{e^+ \gamma}}$
- Signal e^+ contains ~9 N_{TC} . For events with 9 N_{TC} , $\sigma_{t_{e^+ \gamma}}$ $^{\thicksim}78$ ps
- Comparable to MEG II goal of 84 ps

- Tools to estimate background rates/distributions in the signal region
- Time sideband:
	- Signal region offset in $t_{e^+\gamma}$
	- Estimate N_{ACC} in signal region
	- Calculate distribution of accidentals (e.g. E_γ , p_e) expected in the signal region
- Energy sideband:
	- Signal region shifted to lower E_{γ}
	- Estimate N_{RMD} in signal region; found to be completely negligible
- Toy MC:
	- Use resolutions and sideband results to generate many toy MC "experiments"
	- Toy MC experiments contain expected accidental distributions: used to calculate the upper-limit in the absence of signal

Probability Density Functions

• Using kinematic resolutions and sideband information we build signal and accidentals PDFs (graphic shows equal weighting)

- Maximum likelihood analysis (MLA) uses the signal/background PDFs to fit for N_{SIG} , N_{ACC} , N_{RMD} , X_{TGT}
- Extended Likelihood function:
- $L(\vec{\theta}) = \frac{e^{-N}N^n}{n!} \prod_{i=1}^n p(\vec{x_i}; \vec{\theta})$ $L(N_{\rm sig}, N_{\rm RMD}, N_{\rm Acc}, X_{\rm TGT})$ $:= \exp\left(-\frac{(X_{\text{TGT}})^2}{2\sigma_{\text{TGT}}^2}\right)$ Nuisance Parameters $\times \exp\left(-\frac{(N_{\rm RMD} - \langle N_{\rm RMD} \rangle)^2}{2\sigma_{\rm RMD}^2}\right) \times \exp\left(-\frac{(N_{\rm Acc} - \langle N_{\rm Acc} \rangle)^2}{2\sigma_{\rm Acc}^2}\right)$ $\times \frac{e^{-(N_{\text{sig}}+N_{\text{RMD}}+N_{\text{Acc}})} }{\text{N}_{\text{obs}}!} \prod_{i=1}^{N_{\text{obs}}} \big(N_{\text{sig}} S(\vec{x_i}|X_{\text{TGT}}, \vec{q_i}) + N_{\text{RMD}} R(\vec{x_i}|\vec{q_i})\big) + N_{\text{Acc}} A(\vec{x_i}|\vec{q_i})\big)$

• Applying the MLA to toy MC in the absence of signal, we estimate a median upper-limit on N_{SIG} of 2.21 at the 90% CL

- Cut and count analysis (CCA): define a signal region and count the number of events inside (N_{SIG}) . No RDC used
- The analysis region is defined by a hyperradius ($r_H < 3.45$):

$$
r_H = \sqrt{\left(\frac{t_{e\gamma}}{\sigma_{t_{e\gamma}}}\right)^2 + \left(\frac{\phi_{e\gamma}}{\sigma_{\phi_{e\gamma}}}\right)^2 + \left(\frac{\theta_{e\gamma}}{\sigma_{\theta_{e\gamma}}}\right)^2 + \left(\frac{\left(\frac{m_\mu}{2} - \alpha\right) - p_e}{\sigma_{p_e}}\right)^2 + \left(\frac{\left(\frac{m_\mu}{2} - \beta\right) - E_\gamma}{\sigma_{E_\gamma}}\right)^2}
$$

- Calculate $\langle N_{ACC}\rangle$ in signal region using time sidebands and toy MC: $\langle N_{ACC}\rangle$ =0.61 events
- The median/mode toy MC experiment results in zero events
- Using the Feldman Cousins approach, this null signal would result in an UL on N of 1.8 at the 90% CL, but a lower signal efficiency (of 2.95 at the 90% CL)

- \cdot In either physics analysis, to convert the upper-limit on N into a branching fraction of $\mu^+{\rightarrow}e^+\gamma$, we require the number of μ^+ observed in our dataset, N_μ
- *Single event sensitivity is the branching fraction that would result in 1 signal event in the dataset i.e., $1/N_{\mu}$
- Measure N_{μ} using two techniques:
	- Measure the number of positrons reconstructed in a trigger requiring only an SPX hit:

$$
N_{\mu} = N_{e\nu\overline{\nu}} \cdot P_{e\nu\overline{\nu}} \cdot \frac{1}{f(e\nu\overline{\nu}, *)} \cdot \frac{\epsilon_{TRG}^{e\gamma}}{\epsilon_{TRG}^{e\nu\overline{\nu}}} \cdot \frac{\epsilon_{e}^{e\gamma}}{\epsilon_{e}^{e\nu\overline{\nu}}} \cdot A_{e\gamma} \cdot \epsilon_{\gamma}^{e\gamma} \cdot \epsilon_{SEL}^{e\gamma}
$$

• Measure the number of RMD events in the physics trigger sample $(45 < E_v 48$ MeV):

$$
N_{\mu} = N_{e\nu\overline{\nu}\gamma} \cdot \frac{1}{B(e\nu\overline{\nu}\gamma, *)} \cdot \frac{\epsilon_{TRG}^{e\gamma}}{\epsilon_{TRG}^{e\nu\overline{\nu}\gamma}} \cdot \frac{\epsilon_{e}^{e\gamma}}{\epsilon_{e}^{e\nu\overline{\nu}\gamma}} \cdot \frac{\epsilon_{\gamma}^{e\gamma}}{\epsilon_{\gamma}^{e\nu\overline{\nu}\gamma}} \cdot \frac{\epsilon_{SEL}^{e\gamma}}{\epsilon_{SEL}^{e\nu\overline{\nu}\gamma}}
$$

- Both require acceptance and efficiency terms estimated from a variety of sources e.g. calibration data, alternate trigger data, Monte Carlo, etc.
- Normalization measurements agree within 2σ
- Normalization of MLA is $2.64 \cdot 10^{12}$, CCA is 1.98 $\cdot 10^{12}$ due to a lower signal efficiency

Sensitivity From Toy MC

- 'Sensitivity' is median toy MC upper-limit in the absence of signal: upper-limit on N_{SIG} divided by the normalization, N_{μ} : $UL_{N_{SIG}}/N_{\mu}$
- This is the median upper-limit we expect to set in the absence of signal
- MEG II 2021 dataset sensitivity approaches that of MEG I
- Projects to reach its goal sensitivity by end of MEG II lifetime

Signal Region

- The CCA resulted in a null signal therefore resulting in an upper-limit of $9.3*10^{-13}$
- The MLA resulted in an upper-limit on N_{SIG} of 1.98 i.e., an upper-limit of $7.5*10^{-13}$ NLL is comparable to that of toy MC
- Both results are in good agreement with the toy MC experiments (close to median)

2/1/2024 Search for $\mu^+\to e^+\gamma$ in the MEG II Experiment's First Physics Dataset | Dylan Palo – University of California, Irvine

- The CCA resulted in a null signal therefore resulting in an upper-limit of $9.3*10^{-13}$
- The MLA resulted in an upper-limit on N_{SIG} of 1.98 i.e., an upper-limit of $7.5*10^{-13}$ NLL is comparable to that of toy MC
- The top ranked events from the CCA are shown below. Good agreement between the top ranked MLA and CCA events

$MEG II Current Status$

- Figure shows the effective number $\frac{2}{3}$ of muons accumulated for 2021-2023
- Accumulated data is already 9x that of the 2021 result
- The sensitivity after the full 2023 run (December) should approach the goal of the MEG II experiment, expected to reach a sensitivity of $~10^{-14}$

Conclusions

- MEG II collaboration has come a long way in the last few years. In the 2020 engineering run, the drift chamber experienced high currents and only a small fraction of the electronics were available
- In the 2021 physics run, the experiment achieved resolutions comparable to the MEG II design
- Now the 2021-2023 dataset is expected to achieve the most stringent limit on the CLFV μ→eγ decay or detect a signal
- Will continue optimizing for 2022,2023 physics analysis. Focus on shortcomings:
	- Optimize the magnetic field calculation/measurements
	- Alternative LXe energy calculations
	- Alternative CDCH track finders
- [Physics paper,](https://inspirehep.net/literature/2712678) [Operations paper](https://inspirehep.net/literature/2712182)

Thanks for listening! Questions?

43

2/1/2024 Search for $\mu^+\to e^+\gamma$ in the MEG II Experiment's First Physics Dataset | Dylan Palo – University of California, Irvine

Backup: Normalization

$$
N_{e\nu\overline{\nu}} = \frac{N_{e\nu\overline{\nu}}^{\mu}}{P_{e\nu\overline{\nu}}} \cdot \mathcal{B}_{e\nu\overline{\nu}} \cdot f_{e\nu\overline{\nu},*} \cdot T_{e\nu\overline{\nu}} \cdot \epsilon_{TRG}^{e\nu\overline{\nu}} \cdot \epsilon_{e}^{e\nu\overline{\nu}}
$$

\n
$$
N_{e\gamma} = \frac{N_{e\gamma}^{\mu}}{P_{e\gamma}} \cdot \mathcal{B}_{e\gamma} \cdot T_{e\gamma} \cdot \epsilon_{TRG}^{e\gamma} \cdot \epsilon_{e}^{e\gamma} \cdot A_{e\gamma}^{\gamma} \cdot \epsilon_{\gamma}^{e\gamma} \cdot \epsilon_{SEL}^{e\gamma}
$$

\n
$$
\frac{\mathcal{B}_{e\gamma}}{\mathcal{B}_{e\nu\overline{\nu}}} = \frac{N_{e\gamma}}{N_{e\nu\overline{\nu}}} \cdot \frac{f_{e\nu\overline{\nu},*}}{P_{e\nu\overline{\nu}}} \cdot \frac{\epsilon_{TRG}^{e\nu\overline{\nu}}}{\epsilon_{TRG}^{e\gamma}} \cdot \frac{\epsilon_{e}^{e\nu\overline{\nu}}}{\epsilon_{e}^{e\gamma}} \cdot \frac{1}{A_{e\gamma}^{\gamma}} \cdot \frac{1}{\epsilon_{\gamma}^{e\gamma}} \cdot \frac{1}{\epsilon_{SEL}^{e\gamma}}
$$

\n
$$
SES = \frac{1}{N_{e\nu\overline{\nu}}} \cdot \frac{f_{e\nu\overline{\nu},*}}{P_{e\nu\overline{\nu}}} \cdot \frac{\epsilon_{TRG}^{e\nu\overline{\nu}}}{\epsilon_{TRG}^{e\gamma}} \cdot \frac{\epsilon_{e}^{e\nu\overline{\nu}}}{\epsilon_{e}^{e\gamma}} \cdot \frac{1}{A_{e\gamma}^{\gamma}} \cdot \frac{1}{\epsilon_{\gamma}^{e\gamma}} \cdot \frac{1}{\epsilon_{SEL}^{e\gamma}}
$$

\n
$$
N_{\mu} = N_{e\nu\overline{\nu}} \cdot \frac{P_{e\nu\overline{\nu}}}{f_{e\nu\overline{\nu},*}} \cdot \frac{\epsilon_{TRG}^{e\gamma}}{\epsilon_{TRG}^{e\gamma}} \cdot \frac{\epsilon_{e}^{e\gamma}}{\epsilon_{e}^{e\gamma}} \cdot A_{e\gamma}^{\gamma} \cdot \epsilon_{\gamma}^{e\gamma} \cdot \epsilon_{SEL}^{
$$

Backup: Beamline

Figure 4 MEG Beam line with the π E5 channel and MEG detector system incorporated in and around the COBRA magnet.

Backup: XEC QE

- Anneal MPPCs every year in order to recover MPPC quantum efficiency
- Quantum efficiency degrades with beam exposure
- Likely related to removing a protective coating, removed to absorb VUV light on MPPCs
- Anneal using Joule method: i.e. applying high current

Degradation speed ~0.08%/hour

Backup: Camera Analysis

- Expect target motion on a short time scale e.g., following target insertions/extractions (LXe calibrations)
- ~120 dots printed on target surface; imaged by photographic camera ~1.2 m from target
- Image analysis code measures dot coordinates on the **CCD**
- Fit for the 3D target position, rotation, shape using projection equations: $X_{CCD} = \frac{f * X_{CAM}}{Z_{CALI} - f}$ Z_{CAM} − f
-
- Analysis requires relative CDCH-target position

- Three optical corner cubes on the target frame
- Optical survey provides the corner position in relative to detectors (CDCH,LXe, etc.)
- Target CT scan provides the relative coordinates of the target foil/corner cubes in a nominal coordinates system
- Combination yields the relative position of the target foil with respect to the detectors at the time of the survey

- Rigid body 6-parameter transformation: survey→ MEG data start $(0\rightarrow 1000$ h)
- \sim 600 µm shifts normal to the target surface: $cos(15^\circ)X_{MEG}$ + sin(15°) Z_{MEG}
- Unknown origin, but significant work in area
- Reminder:

600 μm \rightarrow **~7 mrad** φ_e **error**

• Small shifts of \sim 50 µm with insertions/extractions

Backup: Target Shape

- CT scan and camera analysis shape agree within $~50$ µm at all points on the surface
- Implement target into MEG analysis framework by tessellating the deformation into an array of triangular faces
- Propagate positrons to tessellation X_{TGT} [mm]

Backup: pTC Time Resolution

- pTC $\sigma_{t_{e^+}}$ estimated by comparing time of even/odd ordered hits in the same "cluster" of SPX hits
- Fit for $\sigma_{t_{e^+}}(N_{TC}) =$ 112 N_{TC}
- Signal $e^+ < N_{TC} > -9$

 $t_{\alpha+}$ (ps)

Positron Analysis

52

2/1/2024 Search for $\mu^+\to e^+\gamma$ in the MEG II Experiment's First Physics Dataset | Dylan Palo – University of California, Irvine

Physics Analysis

- **Goal: detect the** $\mu^+ \rightarrow e^+ \gamma$ **signal or** calculate an upper-limit on BR of $\mu^+ \rightarrow e^+ \gamma$ using $E_\gamma, E_e, \varphi_{e\gamma}, \theta_{e\gamma}, t_{e\gamma} + (t_{RDC-LXE}, E_{RDC})$
- Two **blind** physics analyses discussed in next few slides:
	- Cut and count analysis (2 separate analyses)
	- Maximum likelihood analysis (2 separate analyses)
- Common requirements:
	- **Calibrations, alignments, noise suppression**
	- **Positron/photon selection**
	- **Kinematic resolution estimates**
	- Correlations between kinematics
	- Both opt to include event-by-event information
	- **Estimates of background rates/distributions**

Backup: Positron Kinematic Correlations

- . The double turn analysis also extracts correlations between kinematic variables
- Some are not accessible in the data and thus rely on MC
- Correlations:

$$
\delta \phi = [p_0^{\phi} + p_1^{\phi} \cdot \tan(\phi)] \cdot \delta E*
$$

$$
\delta Y = p_0^Y + p_1^Y \cdot \delta E*
$$

$$
\delta Z = [p_2^Z + p_3^Z \cdot \cot(\theta)] \cdot \delta E*
$$

$$
\delta Z = p_0^Z + p_1^Z \cdot \delta \theta
$$

$$
\delta \phi = [p_5^{\phi} + p_6^{\phi} \cdot \phi + p_7^{\phi} \cdot \phi^2] \cdot \delta Z*
$$

$$
\delta \phi = [p_2^{\phi} + p_3^{\phi} \cdot \phi + p_4^{\phi} \cdot \phi^2] \cdot \delta \theta
$$

54

2/1/2024 Search for μ⁺ →e⁺γ in the MEG II Experiment's First Physics Dataset | Dylan Palo – University of California, Irvine

- Model-independent effective Lagrangian with two types of theoretical models
- \bullet If (e.g. SUSY, $K << 1$): $BR(\mu \rightarrow e\gamma) \sim BR(\mu N \rightarrow eN)/\alpha$
- \bullet If (e.g. leptoquarks, $K>>1$): μN→eN is at tree level and μ→eγ is at loop level
- Mu2e reaches far lower sensitivities in the quarklepton coupling models
- MEG II and Mu2e are synergetic: in κ <<1 models the two will have a comparable sensitivity (if MEG II sees a signal, Mu2e should too)

- Observed low frequency noise on the CDCH waveforms coherent over entire electronics chips
- Developed algorithms to suppress noise by averaging the voltage bin-by-bin/chip away from signals
- **Noise suppression is critical to improving hit efficiency and improving track space-point measurements**

