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Shining lights through nuclear matter to 
see why they matter
- What we can learn from the Vector Meson Production
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Our universe
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Observable universe is ~ 93 billion light-years in diameter
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What we can SEE in our universe
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Only 5% of the universe 
is visible matter

The cosmic budget of ‘ordinary’ matter
– European Space Agency
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What is visible matter made of?

4

⼀花⼀世界，⼀叶⼀如来
《华严经》

A world in every flower, a Buddha 
in every leaf
- Mahāvaipulya 
Buddhāvataṃsaka Sūtra

(Video by CERN)
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What holds them together? 
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Mass fact sheet:
Proton~ 1 GeV/c2
Up & down quarks < 0.005 GeV/c2
Gluon = 0 MeV/c2

Have you wondered? 
v Where does > 99% of proton mass 

come from?  

Gluons
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Nuclei are ≠ nucleons sitting together

6

“..figuring out a pocket watch by smashing two together and 
observing the flying debris” 

– Richard Feynman

1) Heavy-Ion Collisions

Nparticle in AA collisions / (Ncol) 

Nparticle in pp collisions
RAA =

Nuclear suppression from the hot Quark Gluon Plasma
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Nuclei are ≠ nucleons sitting together

71. Resolution ~
2. Momentum fraction ~ xbj =

Q2

2Pq
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Deep Inelastic Scattering2) Electron-Ion Collisions

Deep Inelastic Scattering (DIS)

Cross section in eA DIS

Cross section in ep DIS
“ReA” =

Nuclear suppression before the Quark Gluon Plasma
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This is where EIC and HI physics meets
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LHC kinematics

RHIC 
kinematics

Initial state – cold QCD Initial + final state – hot QCD
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This is where EIC and HI physics meets
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LHC kinematics

RHIC 
kinematics

Initial state – cold QCD Initial + final state – hot QCD

This talk – I will focus on 
low-x physics in cold QCD.
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Vector Meson (e.g., J/𝛙) production in heavy nuclei
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At Leading Order, 2-gluon exchange
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Vector Meson (e.g., J/𝛙) production in heavy nuclei
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At Leading Order, 2-gluon exchange Coherent
(target stays intact)

Incoherent
(target breaks up)

Average nuclear parton 
density

Event-by-event parton 
density fluctuations

Momentum transfer (t) and transverse spatial position 
(b) are Fourier transforms of each other;
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Vector Meson (e.g., J/𝛙) production in heavy nuclei
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At Leading Order, 2-gluon exchange

Three main physics goals:
1. Coherent production – average nuclear parton density
2. Incoherent production – E-by-E fluctuations of nuclear parton density 
3. Imaging of nuclear parton spatial distribution in nuclei.

Coherent
(target stays intact)

Incoherent
(target breaks up)

Average nuclear parton 
density

Event-by-event parton 
density fluctuations

Momentum transfer (t) and transverse spatial position 
(b) are Fourier transforms of each other;
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Ultra-Peripheral Collisions at RHIC 
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U238, Au197, Zr96 , Ru96, d2 at 200 GeV and pp at 510 GeV

quasi-real photon

collisions that don’t “collide”

A versatile program with different species, energy, and polarization. 
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What we learned:

• Coherent J/𝛙 photoproduction 
cross section is suppressed 
even at x ~ 0.03-0.04. 

1. Coherent J/𝛙 photoproduction at RHIC
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(submitted to PRC, arXiv:2311.13632)
Technical details of resolving photon energy 
ambiguity, data corrections, etc. See paper.

https://arxiv.org/abs/2311.13632
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1. Coherent J/𝛙 photoproduction at RHIC
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(submitted to PRC, arXiv:2311.13632)
Technical details of resolving photon energy 
ambiguity, data corrections, etc. See paper.

What we learned:

• Coherent J/𝛙 photoproduction 
cross section is suppressed 
even at x ~ 0.03-0.04. 

• Gluon saturation model (CGC) 
cannot be applied and 
overpredicted at x ~ 0.01.

• Leading twist shadowing 
model works almost perfectly 
(tuning based on LHC data)

https://arxiv.org/abs/2311.13632
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Digression: 
– what is saturation and what is Leading twist shadowing?
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Color Glass Condensate (CGC)
Dipole-target scattering with small-x 

evolution equation + saturation scale Qs

This quadratic term is why we call it 
the nonlinear QCD effect
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Digression: 
– what is saturation and what is Leading twist shadowing?
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Leading Twist Approximation (LTA)
Combination of Gribov-Glauber theory, QCD 

factorization, and HERA diffractive data

Color Glass Condensate (CGC)
Dipole-target scattering with small-x 

evolution equation + saturation scale Qs

L. Frankfrut,, V. Guzey, M. Strikman (Physics Reports 512 (2012) 255-393)
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Digression: 
– what is saturation and what is Leading twist shadowing?

18

Leading Twist Approximation (LTA)
Combination of Gribov-Glauber theory, QCD 

factorization, and HERA diffractive data

Color Glass Condensate (CGC)
Dipole-target scattering with small-x 

evolution equation + saturation scale Qs

L. Frankfrut,, V. Guzey, M. Strikman (Physics Reports 512 (2012) 255-393)

More relevant for 
RHIC energies?
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2. Incoherent J/𝛙 photoproduction at RHIC

19
arXiv:2311.13632
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[made by A. Kumar (IIT, Delhi)]

Sartre 
simulation

https://arxiv.org/abs/2311.13632
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2. Incoherent J/𝛙 photoproduction at RHIC
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What we learned:

• CGC with and without fluctuation of 
gluon density are compared (shape 
only), while none can describe the 
data. 

https://arxiv.org/abs/2311.13632
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2. Incoherent J/𝛙 photoproduction at RHIC
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What we learned:

• CGC with and without fluctuation of 
gluon density are compared (shape 
only), while none can describe the 
data. 

• The shape of the pT
2 is consistent 

with free proton. No additional 
`fluctuation`.

https://arxiv.org/abs/2311.13632


Early Career Seminar

2. Incoherent J/𝛙 photoproduction at RHIC
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What we learned:

• CGC with and without fluctuation of 
gluon density are compared (shape 
only), while none can describe the 
data. 

• The shape of the pT
2 is consistent 

with free proton. No additional 
`fluctuation`.

• Incoherent cross section is also 
suppressed w.r.t free proton, and 
stronger than coherent!
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Nuclear suppression factor
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What we learned:

• Significant suppression of both 
coherent and incoherent J/𝛙 
photoproduction. 

• Incoherent is twice as suppressed as 
that of coherent. Even stronger than 
the “strong” shadowing mode in 
Leading twist shadowing model.

• Another observable to disfavor 
fluctuation model.

(submitted to PRL, arXiv:2311.13637)

New

https://arxiv.org/abs/2311.13637
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CGC describes better at higher energies?

24

• Yes, but LTA describes the data equally well. 
• None of these models can describe the entire energy dependence and all models 

generally reach a “similar conclusion”.

Phys. Rev. Lett. 131 (2023) 262301JHEP 10 (2023) 119
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CGC describes better at higher energies?
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• Yes, but LTA describes the data equally well. 
• None of these models can describe the entire energy dependence and all models 

generally reach a “similar conclusion”.

Phys. Rev. Lett. 131 (2023) 262301JHEP 10 (2023) 119

Separating the two models is one of the most pressing questions in 
UPC Vector Meson physics
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3. Imaging the parton spatial distribution

26
[made by A. Kumar (IIT, Delhi)]

Sartre simulation
Coherent J/𝛙 
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What’s next? 
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Two questions:
a) Separating CGC vs LTA at low-x or LHC energies 
b) Separating Coherent and Incoherent as a function of pT

2 
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a) Separating CGC vs LTA at low-x or LHC energies 
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New proposal

- Diffractive Vector Meson over inclusive 
jet/hadron photoproduction in UPCs 

New
Y. Kovchegov, H. Sun, ZT (2023), arXiv:2311.12208, submitted to PRD

Unambiguous signal of saturation from J/𝛙 

~ A2/3

Naively, LTA should be below 1

https://arxiv.org/abs/2311.12208


Early Career Seminar

b) Separating Coherent and Incoherent as a 
function of pT2 

29

The ePIC detector – at the Electron-Ion Collider
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b) Separating Coherent and Incoherent as a 
function of pT2 
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The ePIC detector – at the Electron-Ion Collider

Far-forward detector system:
What we use to select/veto the 
incoherent production
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b) Separating Coherent and Incoherent as a 
function of pT2 

31

The ePIC detector – at the Electron-Ion Collider It’s still challenging to measure the gluon spatial distribution

Simulation Campaign Dec 2023



Early Career Seminar

Future opportunities

32
2023 2025 2029 2034+

RHIC 23-25

Since 2022, STAR has forward 
detectors (2.5 < η < 4.0):
• J/𝛙 coherent and incoherent 

production with high 
precision. Lower W towards 
a few GeV, and high t to 
better understand fluctuation.

• 𝝓 photoproduction. 
• Photoproduction of jets.
• New observables.
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Future opportunities

33

Since 2022, STAR has forward 
detectors (2.5 < η < 4.0):
• J/𝛙 coherent and incoherent 

production with high 
precision. Lower W towards 
a few GeV, and high t to 
better understand fluctuation.

• 𝝓 photoproduction. 
• Photoproduction of jets.
• New observables.

2023 2025 2029 2034+

RHIC 23-25 & LHC Run 3

All LHC experiments will have significant 
upgrades in Run 3 & 4 (e.g., wide acceptances, 
ALICE FoCal, etc.). Lower-x reach!

LHC Run 4
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Future opportunities

34

All LHC experiments will have significant 
upgrades in Run 3 & 4 (e.g., wide acceptances, 
ALICE FoCal, etc.). Lower-x reach!

2023 2025 2029 2034+

LHC Run 4RHIC 23-25 & LHC Run 3

The ePIC detector and possible 
a 2nd detector: the ultimate 
machine for understanding 
saturation quantitatively with a 
wide variety of observables.

EIC era

Since 2022, STAR has forward 
detectors (2.5 < η < 4.0):
• J/𝛙 coherent and incoherent 

production with high 
precision. Lower W towards 
a few GeV, and high t to 
better understand fluctuation.

• 𝝓 photoproduction. 
• Photoproduction of jets.
• New observables.
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Summary

35

• Diffractive Vector-Meson production is a powerful probe for understanding 
the cold QCD physics in nuclei.
• Large nuclear suppression of J/𝛙 photoproduction.
• Leading Twist Shadowing describes better the RHIC data, while for the LHC we 

need new observables to differentiate models.

• RHIC and LHC UPC data are complimentary, together spans a wide range of 
energy and kinematic phase space.

Energy frontier: UPCs at RHIC and the LHC can help understand 
the nuclear parton modification at low-x.

Precision frontier: EIC will be the ultimate machine to understand 
the detail of nuclear dynamics in 3D. 
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Backup

36
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Early RHIC data from PHENIX

37

Phys. Lett. B 679 (2009) 321-329

Statistics was limited, coherent and incoherent were not separated, and with 
neutron selections
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STAR experiment

38

Time Projection Chamber 
(TPC)

Time-Of-Flight detector 
(TOF)

Barrel EM Calorimeter 
(BEMC)

Relevant central detectors

Since 2022, STAR has forward detectors (2.5 < η < 4.0), which 
would be crucial to the RHIC Run 23-25 physics program
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Data analysis:

J/𝛙à e+e- 

(|y| < 1.0 for J/𝛙, electrons within |η|<1.0)

STAR PID (e.g., TPC, TOF) capability 
ensures high purity of electron candidates.

Different templates from STARLight and H1 
ep data are used to describe the signal and 
backgrounds. 

Measuring J/𝛙 in 200 GeV Au+Au UPCs 
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1.5
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Separating coherent and incoherent J/𝛙 

41
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Ø Low momentum transfer (pT
2) is 

dominated by coherent 
photoproduction. 

Ø For incoherent production at low 
pT

2, it is extrapolated using 
different templates. 

Ø These differences, however, are 
small to the total incoherent 
production cross section.
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First measurement of 
y-dependence of J/𝛙 at RHIC 
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v Important measurements to constrain 
theoretical models

v Ratio of incoherent to coherent cross 
section largely cancels uncertainties both 
experimentally and theoretically

v New studies show this ratio is sensitive to 
nuclear structure and nuclear deformation 

   (by W. Zhao et al. at a recent INT workshop)

New

https://www.int.washington.edu/sites/default/files/schedule_session_files/Zhao_W.pdf
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AuAu UPCs: two-source ambiguity
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Which nucleus 
provides the photon?

photon 	J/"
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Photon flux and neutron emissions for coherent J/𝛙 
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 = 200 GeV)NNs+Au*+Au* (ψ J/→Au+Au 

Nuclear breakup:
γ

Solid (dashed) line: low (high) E

ψJ/
 y±Mirrored Ø If VM at rapidity y ≠ 0, there is a high 

energy photon (k1) candidate and a low 
energy photon (k2) one;

Ø Different photon energies correspond to 
different flux factors (~number of photons)

Ø Different neutron emission classes 
associate with different flux factors

STARLight model

Neutron classes:
• 0n0n: no neutron on either side
• 0nXn: >=1 neutron on one side
• XnXn: >=1 neutron on both sides
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Photon flux and neutron emissions for coherent J/𝛙 
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Nuclear breakup:
γ

Solid (dashed) line: low (high) E

ψJ/
 y±Mirrored Ø If VM at rapidity y ≠ 0, there is a high 

energy photon (k1) candidate and a low 
energy photon (k2) one;

Ø Different flux factor (~number of photons) at 
different energy

Ø Each process associates with neutron 
emission in an independent way

STARLight model

Neutron classes:
• 0n0n: no neutron on either side
• 0nXn: >=1 neutron on one side
• XnXn: >=1 neutron on both sides

a)Coherent J/𝛙 production is 
independent of neutron emissions

b)Incoherent J/𝛙 production is highly 
correlated with neutron emissions 
(e.g., BeAGLE)
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New data tests nuclear breakup 
model and assumptions

Reference to BeAGLE: Phys. Rev. D 106 (2022) 1, 012007

New
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Neutron emission helps resolve the two-source ambiguity

46

Measurements
(slide 12)

Photon fluxes
(slide 14)

Unknowns

Need to measure differential cross section in y and in neutron 
emission classes; at least 2 equations to solve 2 unknowns.

Eur. Phys. J C (2014) 74:2942
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Shadowing in incoherent J/𝛙 photoproduction
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Intuitively, the incoherent J/𝛙 production is the convolution of: J/𝛙 production off a nucleon 
inside of a nucleus ⊗ probability of the J/𝛙 survives on its way out of the nucleus.

(Phys. Rev. C 108 (2023) 2, 024904)

This ratio is driven by multi-nucleon 
interactions, nuclear thickness function, 
diffractive parton distributions, etc.



Early Career Seminar

0 0.5 1
y 

0

50

100

150

b)
 

µ
/d

y 
(

σd

Data     STARlight         NLO
ψJ/ ψJ/ ψJ/
(2S)ψ (2S)ψ

VM+Au*+Au*→Au+Au
Coherent

STAR Preliminary

0 0.5 1
y 

0

0.05

0.1

0.15

0.2

R
at

io

ψ(2S) / J/ψ

NLO calculation 
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Next-to-Leading Order (NLO) pQCD 
calculation, constrained by the LHC data

EPPS21 + scale at 2.39 GeV.
Only scale uncertainty shown.

Could not describe the STAR data at y = 0.

Reference to NLO pQCD calculation: 
a) arXiv:2210.16048
b) Phys. Rev. C 106 (2022) 3, 035202

New
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