

Shining lights through nuclear matter to see why they matter

- What we can learn from the Vector Meson Production

Kong Tu (BNL)

Our universe

Observable universe is ~ 93 billion light-years in diameter

What we can SEE in our universe

Only 5% of the universe is **visible matter**

What is visible matter made of?

一花一世界,一叶一如来 《华严经》

A world in every flower, a Buddha in every leaf - Mahāvaipulya Buddhāvataṃsaka Sūtra

(Video by CERN)

What holds them together?

Nuclear suppression from the hot Quark Gluon Plasma Nuclei are \neq nucleons sitting together

– Richard Feynman

Nuclear suppression before the Quark Gluon Plasma

Deep Inelastic Seattering (DIS) 2

This is where EIC and HI physics meets

Initial state – cold QCD

Initial + final state - hot QCD

This is where EIC and HI physics meets

Vector Meson (e.g., J/ψ) production in heavy nuclei

At Leading Order, 2-gluon exchange

Vector Meson (e.g., J/ψ) production in heavy nuclei

Vector Meson (e.g., J/ψ) production in heavy nuclei

Three main physics goals:

- 1. Coherent production average nuclear parton density
- 2. Incoherent production E-by-E fluctuations of nuclear parton density
- 3. Imaging of nuclear parton **spatial** distribution in nuclei.

Ultra-Peripheral Collisions at RHIC

A versatile program with different species, energy, and polarization.

1. Coherent J/\psi photoproduction at RHIC

What we learned:

 Coherent J/ψ photoproduction cross section is suppressed even at x ~ 0.03-0.04.

Technical details of resolving photon energy ambiguity, data corrections, etc. See paper.

1. Coherent J/\psi photoproduction at RHIC

What we learned:

- Coherent J/ψ photoproduction cross section is suppressed even at x ~ 0.03-0.04.
- Gluon saturation model (CGC) cannot be applied and overpredicted at x ~ 0.01.
- Leading twist shadowing model works almost perfectly (tuning based on LHC data)

Technical details of resolving photon energy ambiguity, data corrections, etc. See paper.

Digression:

– what is saturation and what is Leading twist shadowing?

Dipole-target scattering with small-x evolution equation + saturation scale Q_s

16

Digression:

– what is saturation and what is Leading twist shadowing?

ln x

Color Glass Condensate (CGC) Dipole-target scattering with small-x evolution equation + saturation scale Q_s

L. Frankfrut,, V. Guzey, M. Strikman (Physics Reports 512 (2012) 255-393)

Leading Twist Approximation (LTA) Combination of Gribov-Glauber theory, QCD factorization, and HERA diffractive data

Digression:

– what is saturation and what is Leading twist shadowing?

2. Incoherent J/ψ photoproduction at RHIC

2. Incoherent J/ψ photoproduction at RHIC

What we learned:

 CGC with and without fluctuation of gluon density are compared (shape only), while none can describe the data.

2. Incoherent J/ψ photoproduction at RHIC

What we learned:

- CGC with and without fluctuation of gluon density are compared (shape only), while none can describe the data.
- The shape of the p_T² is consistent with free proton. No additional `fluctuation`.

2. Incoherent J/ψ photoproduction at RHIC

What we learned:

- CGC with and without fluctuation of gluon density are compared (shape only), while none can describe the data.
- The shape of the p_T² is consistent with free proton. No additional `fluctuation`.
- Incoherent cross section is also suppressed w.r.t free proton, and stronger than coherent!

Nuclear suppression factor

What we learned:

- Significant suppression of both coherent and incoherent J/ ψ photoproduction.
- Incoherent is twice as suppressed as that of coherent. Even stronger than the "strong" shadowing mode in Leading twist shadowing model.
- Another observable to **disfavor** fluctuation model.

(submitted to PRL, arXiv:2311.13637)

CGC describes better at higher energies?

- Yes, but LTA describes the data equally well.
- None of these models can describe the entire energy dependence and **all models** generally reach a "similar conclusion".

CGC describes better at higher energies?

Separating the two models is one of the most pressing questions in UPC Vector Meson physics

3. Imaging the parton spatial distribution

Overwhelming incoherent at higher $p_T^2 \rightarrow$ cannot constrain the gluon spatial distribution

What's next?

Two questions:

- a) Separating CGC vs LTA at low-x or LHC energies
- b) Separating Coherent and Incoherent as a function of p_T^2

a) Separating CGC vs LTA at low-x or LHC energies

New proposal

- Diffractive Vector Meson over inclusive jet/hadron photoproduction in UPCs

$$R_{\rm UPC} = \frac{\left[\sigma_{\rm el}^{\rm VM} / \left({\rm d}\sigma_{\rm inclusive}^{\rm jet} / {\rm d}^2 {\rm p_T}\right)\right]_{\rm A+A}}{\left[\sigma_{\rm el}^{\rm VM} / \left({\rm d}\sigma_{\rm inclusive}^{\rm jet} / {\rm d}^2 {\rm p_T}\right)\right]_{\rm p+A}}.$$

Y. Kovchegov, H. Sun, **ZT** (2023), <u>arXiv:2311.12208</u>, submitted to PRD

b) Separating Coherent and Incoherent as a function of $\ensuremath{p_T}^2$

The ePIC detector – at the Electron-Ion Collider

b) Separating Coherent and Incoherent as a function of $\ensuremath{p_T}^2$

The ePIC detector – at the Electron-Ion Collider

b) Separating Coherent and Incoherent as a function of p_T^2 Simulation Campaign Dec 2023

The ePIC detector – at the Electron-Ion Collider *It's still challenging to measure the gluon spatial distribution*

Future opportunities

Since 2022, STAR has forward detectors (**2.5 < η < 4.0**):

- J/ψ coherent and incoherent production with high precision. Lower W towards a few GeV, and high t to better understand fluctuation.
- ϕ photoproduction.
- Photoproduction of jets.
- New observables.

Future opportunities

Since 2022, STAR has forward detectors (**2.5 < η < 4.0**):

- J/ψ coherent and incoherent production with high precision. Lower W towards a few GeV, and high t to better understand fluctuation.
- ϕ photoproduction.
- Photoproduction of jets.
- New observables.

2023

All LHC experiments will have significant upgrades in Run 3 & 4 (e.g., wide acceptances, ALICE FoCal, etc.). **Lower-x reach!**

RHIC 23-25 & LHC Run 3

2025

2029

LHC Run 4

letector

Future opportunities

Since 2022, STAR has forward detectors ($2.5 < \eta < 4.0$):

- J/ψ coherent and incoherent production with high precision. Lower W towards a few GeV, and high t to better understand fluctuation.
- ϕ photoproduction.
- Photoproduction of jets.
- New observables.

Vertex New Tracking station

All LHC experiments will have significant upgrades in Run 3 & 4 (e.g., wide acceptances, ALICE FoCal, etc.). Lower-x reach!

The ePIC detector and possible a 2nd detector: the ultimate machine for understanding saturation quantitatively with a wide variety of observables.

RHIC 23-25 & LHC Run 3

LHC Run 4

Phase-I upgraded LHCb detecto

trigger-less readout & sw trigger on GPUs

rigger and DAC

new and upgraded forwar

2029

Summary

- Diffractive Vector-Meson production is a powerful probe for understanding the cold QCD physics in nuclei.
 - Large nuclear suppression of **J**/**ψ** photoproduction.
 - Leading Twist Shadowing describes better the RHIC data, while for the LHC we need new observables to differentiate models.
- RHIC and LHC UPC data are complimentary, together spans a wide range of energy and kinematic phase space.

Energy frontier: UPCs at RHIC and the LHC can help understand the nuclear parton modification at low-x.

Precision frontier: EIC will be the ultimate machine to understand the detail of nuclear dynamics in 3D.

Backup

Early RHIC data from PHENIX Phys. Lett. B 679 (2009) 321-329

Statistics was limited, coherent and incoherent were not separated, and with neutron selections

STAR experiment

Relevant central detectors

Time Projection Chamber (TPC)

Time-Of-Flight detector (TOF)

Barrel EM Calorimeter (BEMC)

Since 2022, STAR has forward detectors (2.5 < η < 4.0), which would be crucial to the RHIC Run 23-25 physics program

Measuring J/ ψ in 200 GeV Au+Au UPCs

Data analysis:

J/ ψ → e⁺e⁻ (|y| < 1.0 for J/ ψ , electrons within |η|<1.0)

STAR PID (e.g., TPC, TOF) capability ensures high purity of electron candidates.

Different templates from STARLight and H1 *ep* data are used to describe the signal and backgrounds.

Measuring J/ ψ in 200 GeV Au+Au UPCs

when $Q^2 \sim 0$, p_T of J/ψ is directly related to momentum transfer ($t \sim p_T^2$)

Separating coherent and incoherent J/ψ

- Low momentum transfer (p_T²) is dominated by **coherent** photoproduction.
- For incoherent production at low p_T², it is extrapolated using different templates.
- These differences, however, are small to the total incoherent production cross section.

First measurement of y-dependence of J/ψ at RHIC

- Important measurements to constrain theoretical models
- Ratio of incoherent to coherent cross section largely cancels uncertainties both experimentally and theoretically
- New studies show this ratio is sensitive to nuclear structure and nuclear deformation (by <u>W. Zhao et al.</u> at a recent INT workshop)

AuAu UPCs: two-source ambiguity

Photon flux and neutron emissions for coherent J/ ψ

- If VM at rapidity y ≠ 0, there is a high energy photon (k_1) candidate and a low energy photon (k_2) one;
- Different photon energies correspond to different flux factors (~number of photons)
- Different neutron emission classes associate with different flux factors

Neutron classes:

- **0n0n:** no neutron on either side
- **0nXn:** >=1 neutron on one side
- XnXn: >=1 neutron on both sides

Photon flux and neutron

$\begin{array}{l} Au+Au \rightarrow J/\psi + Au^* + Au^* \left(\sqrt{s_{_{NN}}} = 200 \ \text{GeV}\right) \\ \hline Mirrored \pm y \\ \hline Mirrored \pm y \\ \hline Model and assumptions \end{array}$

a) Coherent J/ψ production is independent of neutron emissions

10

Reference to BeAGLE: Phys. Rev. D 106 (2022) 1, 012007

Neutron emission helps resolve the two-source ambiguity

$$\begin{aligned} d\sigma^{AnBn}/dy &= \Phi_{T.\gamma}^{AnBn}(k_1) \sigma_{\gamma^* + Au \to J/\psi + Au}(k_1) \\ &+ \Phi_{T.\gamma}^{AnBn}(k_2) \sigma_{\gamma^* + Au \to J/\psi + Au}(k_2) \end{aligned}$$

$$\begin{aligned} & \text{Measurements Photon fluxes}_{\text{(slide 14)}} & \text{Unknowns} \end{aligned}$$

Eur. Phys. J C (2014) 74:2942

Need to measure differential cross section in *y* and in neutron emission classes; **at least 2 equations to solve 2 unknowns.**

Shadowing in incoherent J/ψ photoproduction

Intuitively, the incoherent J/ ψ production is the convolution of: J/ ψ production off a nucleon inside of a nucleus \otimes probability of the J/ ψ survives on its way out of the nucleus.

NLO calculation

Next-to-Leading Order (NLO) pQCD calculation, constrained **by the LHC data**

EPPS21 + scale at 2.39 GeV. Only scale uncertainty shown.

Could not describe the STAR data at y = 0.

Reference to NLO pQCD calculation:

a) arXiv:2210.16048

b) Phys. Rev. C 106 (2022) 3, 035202

Special thanks to:

CGC: Heikki Mäntysaari, Farid Salazar, Björn Schenke Sartre: Tobias Toll, Arjun Kumar Nuclear shadowing: Vadim Guzey, Mark Strikman, Mikhail Zhalov NLO pQCD: Topi Löytäinen et al. Saturation observables: Brian Sun, Y. Kovchegov

For discussions and inputs.