

AE100 - Ion Acceleration at ATF

Zulfikar Najmudin, Nick Dover, Oliver Ettlinger, **Ginevra Casati**

John Adams Institute for Accelerator Science, Imperial College London

Charlotte Palmer

Centre for Plasma Physics, Queen's University Belfast, Belfast, United Kingdom

ATF User Meeting, 26th March 2024

Active Funding: STFC ST/V001639/1

Recent Funding: EPSRC EP/N018680/1, EU Horizon 2020 No 894679

Experimental goals

Main proposal objectives for AE100

- Scaling of hole boring acceleration to higher intensities and shorter laser pulses
- Polarisation control of laser to critical density plasma coupling
- Direct observation of collisionless shocks
- Fundamentals of collisionless shocks and related laser-plasma interaction

Experimental Overview (1)

Why laser driven ion sources?

Z. Taheri-Kadkhoda et al. Radiation Oncology 3 (2008)

Laser driven ion sources increasingly attractive due to high source energy and short bunch length

For example, these sources are well suited for high dose rate radiobiology e.g. FLASH

Imperial College London

Aymar et al. Frontiers in

Physics 8, 567738 (2020)

Important characteristics of laser driven source for applications

- High energy
- High flux
- Different ion species
- High repetition rate
- Minimal debris

Gaseous targets are a great choice, if high energy, high flux ions can be produced...

Experimental Overview (2)

- In order to generate large static electric fields from EM fields, typically require:
 - Laser to be stopped by the plasma
 - Electrons need to gain significant energy to generate space charge

Relativistic electron response scales favourably with laser wavelength

$$a_0 = \frac{eE_0}{m_ec} \cdot \frac{\lambda}{2\pi c}$$

Experimental Overview (3)

mJ level laser pre-pulse to shape gas, optimising density profile - a "blast wave" - Tresca et al. PRL 115 (2015)

Imperial College London

Achieved in the 2 week 2022 beamtime:

New femtosecond probe for measuring Previously: blur due to ionisation and plasma intrapulse dynamics dynamics when temporal overlap between drive and probe

- Previously: 10 ps ND:YAG, results in significant image blur
- New in 2022: Implemented <100 fs Ti:Sapphire probe, allowing measurement of intrapulse dynamics

- Clear channeling of CO₂ pulse observed, coinciding with ion generation
 - Extremely stable ion generation, albeit low energy t=-61 ps

Nick Dover, in preparation

Imperial College London

- Clear channeling of CO₂ pulse observed, coinciding with ion generation
 - Extremely stable ion generation, albeit low energy

Shad1 shot 489

Nick Dover, in preparation

Imperial College London

Good agreement with 2D PIC

 Acceleration behaviour due to a lack of appropriate target shaping Larger f/# results in poorly formed blast waves

Plots courtesy of Matyas Rodriguez Szonyi

Other ongoing work

target shaping conditions:

Simulations in ANSYS Fluent allow design of new, pre-shocked nozzles

Imperial College London

• Clear for a while that CO_2 pre-pulse is not the best way to achieve optimal

Plans for current experimental run

- In 2022, unable to generate hole-boring / shock acceleration
 - Blast wave from pre-pulse was unsuitable for generating steep density gradients on last experiment due to smaller effective f/# - should now be fixed
- Long term aim to shape target in a way decoupled from the CO₂ laser plan to test new methods of target shaping
 - Shocked gas nozzles
 - Use YAG laser for gas shaping?
- Vary laser polarisation to optimise ion generation
- Use newly implemented diagnostics for characterisation of shockwave • acceleration

Imperial College London

Summary - AE100

- So far, 2-week beam times Feb 2020 and October 2022
 - New Ti:S probing capability transformational for • understanding LPI
 - Exciting results on real-time imaging of channeling and ion • acceleration in near-critical density plasma
- Current run aims to: •
 - Address major issue with reliable blast-wave generation for • density scale length shaping
 - Make direct measurements of hole-boring front •
 - Investigate LP/CP effects on ion acceleration ٠

Activities & Impacts Associated with this Experiment – *All Years*

- **Recent talks:** •
 - Invited talk, HEDS 2024 (Nick Dover)
 - AAC 2022 (Igor Pogorelsky)
- Manuscripts: •
 - O. Ettlinger et al. (ICL) "Proton acceleration from a near-critical density plasma grating" in preparation
 - O. Ettlinger et al. (ICL) "Experimental demonstration of shock-driven proton acceleration scaling at near-critical densities" - in preparation
 - N. Dover et al. (ICL) "Observation of laser-generated fast electron Weibel filaments" in preparation
 - N Dover et al. (ICL) "Direct observation of nonlinear laser propagation in near-critical density plasmas" in preparation
 - S. Passaladis et al. "Hydrodynamic computational modelling and simulations of collisional shock waves in gas jet targets" HPLSE 8 (2020)

COVID-19 Impact

Please summarise any significant impacts from COVID-19 on your experiment and team through the course of your experiment

• impact of pandemic, restricted travel etc.

Imperial College London

Inability to complete any experiment from early 2020 through 2022 due to

