

Harmonic Nonlinear Inverse Compton Scattering

Nonlinear ICS by $a_0 > 1$, CO_2 (9.2 μ m) laser with Nd: YAG laser (1 μ m)

BNL ATF user meeting, March 23, 2024 yr

Y. Sakai, O. Williams, A. Fukasawa, J. Rosenzweig, *UCLA* Collaborator: Z. Zhong, *BNL NSLS*

Funding source: DOE Accelerator Stewardship (DE-SC0009914)

Experiment Goala of AE131 Harmonic Nonlinear Inverse Compton Scattering

AE70: Basic study on the nonlinear Compton & AE87: Hard X-ray ICS by Nd: YAG laser

- **Strong field physics: Bi-harmonic Compton interaction**
- **❖** X-ray OAM investigation: Higher order harmonics by circular polarized CO₂ laser
- **♦** Hard X-ray optics developments: DDS measurement & Focusing, Collimation

Nonlinear ICS: $a_L \sim 1^*$, Transverse motion \rightarrow Relativistic, nontrivial longitudinal oscillation Slow down electron's velocity, or Effective mass increase

Bi-harmonic nonlinear Compton interaction

Pulsed waveform modulation of Hard X-ray component at less than $< 10^{-18}$ s time scale (Cycle of 10 keV X-ray)

Observation of Red-Blue shifts & $hv_{L,YAG} \pm n \ hv_{L,CO2}$

Numerically calculated Lienard-Wiechert potential $E_{LW,x}(t_{screen})$ on (x, y, z) = (0, 0, 0)

Only CO₂'s component

Bi-harmonic YAG's component

Experimental set up for both YAG laser ICS in ATF

Input of CO₂ laser and YAG laser are opposite CO₂ laser final focusing optic has D3/8 inch hole for YAG laser path

YAG laser ICS optics, e-beam timing method established:

Electron-beam—controlled deflection of near-infrared laser in semiconductor plasma, Y. Sakai, M. Polyanskiy, M. Babzien et. al. J. Appl. Phys. 133, 143102 (2023)

Rebuilding nonlinear Compton set up For alignment and timing of a both lasers:

Upgraded CO₂ ICS components worked well unexpectedly in 2023yr Oct-Nov run time

BOX8

BOX9

100 MJ YAG AMP

Net YAG LASER IN

02 LASER IN

Summary of major results and/or critical experimental preparations to date

Observed harmonics of linearly polarized ICS X-ray:

Ti 50 um filtering

e-beam energy 60 MeV CO₂ laser wavelength 9.2 μm

♦ Outer ring at 5 [mrad]: Fundamental

♦ Off axis 2 peak: 2nd harmonic

♦ On-axis: 3rd harmonic

Estimated normalized vector potential: $a_{L,0} \sim 1$

Beam Gaussian parameters for numerical estimate

Normalized emittance: 2 [mm mrad] E-beam $\sigma_{e,r}$ at I.P.: 30 [um] E-beam pulse length σ : 3 [ps] CO_2 laser $\sigma_{L,r}$ at I.P. 30 [um] CO_2 laser pulse length, FWHM: 2 [ps]

Photon energy [keV] 21

Photon energy [keV]

 $a_{L,0} = (Ti 50 \mu m)$

Radiation angle x [mrad]

Summary of major results

Owing to newly installed ATF's polarization rotator of multi TW CO₂ laser rotator $(2 \times 22.5 \text{ deg rotation} + \text{wave plate mirror})$

Quick testing: Circularly polarized ICS \rightarrow

Al 250 μm

Filter

 $a_{L,0} = 0.6$

Radiation angle x [mrad]

2nd harmonic X-ray verified

2nd Harmonic: **Al 250um High energy** X-ray **Filtering** Low energy shot 3 J shot 6 J shot $a_{L,0} \sim 0.6$ $a_{L.0} \sim 1.0$ $1 < a_{L.0} < 1.5$ Normalized intensity 0.8 0.6 0.4 0.2 0.2 Normalized intensity 10 20 x [mrad] x [mrad] x [mrad] Numerical Photon energy [keV] Intensity [arb. unit] **Estimate** With

 $a_{L,0} = 1.0$ $a_{L_0} = 1.2$ Radiation angle x [mrad] Radiation angle x [mrad]

Experimental plans for the next year

- Recover Nd YAG ICS (with the CO₂ optics) set up (Includes some sub 100 keV detector testing) {Next run time in 2024yr}
- **Bi-harmonic Compton interaction initial test {2025yr}**
- **M** OAM study (spectrum measurements) Circularly polarized CO₂ laser at a_{L,0} 1.5-2.0 case {2025yr}
- Hard X-ray optics test at 30 keV and then 87.5 keV {2025yr 2026yr}

Summary of products delivered from the work to date

※ Electron-beam—controlled deflection of near-infrared laser in semiconductor plasma, Y. Sakai, M. Polyanskiy, M. Babzien et. al. J. Appl. Phys. 133, 143102 (2023)

Hard X ray inverse Compton scattering at photon energy of 87.5 keV (To be submitted)

Electron Beam Requirements

Parameter	Units	Typical Values	Comments	Requested Values
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values	70 MeV
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	
Compression	fs	Down to 100 fs (up to 1 kA peak current)		
Transverse size at IP (σ)	μm	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	30 μm
Normalized Emittance	μm	1 (at 0.3 nC)	Variable with bunch charge	2 mm mrad
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed	1
Trains mode		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	

CO₂ Laser Requirements

Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO ₂ Regenerative Amplifier Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2 μm
	Peak Power	GW	~3		
	Pulse Mode		Single		
	Pulse Length	ps	2		
	Pulse Energy	mJ	6		
	M ²		~1.5		
	Repetition Rate	Hz	1.5	3 Hz also available if needed	
	Polarization		Linear	Circular polarization available at slightly reduced power	
CO ₂ CPA Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2 μm
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	5	~5 TW operation will become available shortly into this year's experimental run period. A 3-year development effort to achieve >10 TW and deliver to users is in progress.	> = 2
	Pulse Mode		Single		Single
	Pulse Length	ps	2		2
	Pulse Energy	J	~5	Maximum pulse energies of >10 J will become available within the next year	< 10
	M ²		~2		
	Repetition Rate	Hz	0.05		0.01
	Polarization		Linear	Adjustable linear polarization along with circular polarization can be provided upon request	Linear & Circular

Other Experimental Laser Requirements

Ti:Sapphire Laser System	Units	Stage I Values	Stage II Values	Comments	Requested Values
Central Wavelength	nm	800	800	Stage I parameters are presently available and setup to deliver Stage II parameters should be complete during FY22	
FWHM Bandwidth	nm	20	13		
Compressed FWHM Pulse Width	fs	<50	<75	Transport of compressed pulses will initially include a very limited number of experimental interaction points. Please consult with the ATF Team if you need this capability.	
Chirped FWHM Pulse Width	ps	≥50	≥50		
Chirped Energy	mJ	10	200		
Compressed Energy	mJ	7	~20	20 mJ is presently operational with work underway this year to achieve our 100 mJ goal.	
Energy to Experiments	mJ	>4.9	>80		
Power to Experiments	GW	>98	>1067		

Nd:YAG Laser System	Units	Typical Values	Comments	Requested Values
Wavelength	nm	1064	Single pulse	1064
Energy	mJ	5		5 (200 mJ at I.P.)
Pulse Width	ps	14		FWHM 14
Wavelength	nm	532	Frequency doubled	
Energy	mJ	0.5		
Pulse Width	ps	10		

Special Equipment Requirements and Hazards

• None: All item has been registered in ESR ver 2023yr

Experimental Time Request

CY2024 Time Request

Capability	Setup Hours	Running Hours
Electron Beam		2 weeks
NIR Laser	1 weeks	2 weeks
LWIR Laser		2 weeks

Total Time Request for the 3-year Experiment (including CY2024-26)

Capability	Setup Hours	Running Hours
Electron Beam		2 weeks X 6 = 480 hours
NIR Laser		(2 weeks X 1 = 480 hours)
LWIR Laser		(2 weeks X 5 = 480 hours)

Appendix Single shot DDS measurement at X-ray energy of 87.5 keVquantitative study

→ Thick Laue Bent Crystal

Efficiency > Bandwidth

(Collaboration with NSLS II 150 keV section, Z. Zhong)

Multi layer crystal: 5 - 20 keV (CO₂'s ICS component) Thick crystal: 20 keV - 200 keV (YAG's ICS component)

Theta-Theta Bragg [urad]
Rocking curve for Bent crystal,
R2m, Si[111], X-ray energy 80 keV. By XOP v2.3.

- **★** Radius of curvature R: 2.5 m
- ***** Thickness: 1 mm
- **★** Bragg angle at 85keV: ~ 22 mrad
- * Crystal to MCP screen 0.3 m
- ***** Expected dispersion at screen: 10-20 mm:
- **★** Band width: ~ 10 keV
- ***** Reflectivity (Efficiency): ~10%

AE87 \rightarrow Result: Observed attenuation of 87.5 keV Hard X-ray, in a single shot (10⁵-10⁶⁻⁷ photons / shot)

Report to be submitted soon:

Hard X-ray inverse Compton scattering at photon energy of 87.5 keV Numerical Calculation Index →

No-Filter Ti 50 um Al 250 um Al 1000 mm

Appendix

2023yr, Oct-Nov run

3rd harmonic + higher order components

(***Although, 50% of laser flux goes through a on-axis hole)

>= 3rd Harmonic observed:

Al 1000 μm High energy X-ray filtering

Estimated normalized vector potential at Compton I.P.: $a_{L,0} \sim 1$

