PBPL University of California Los Angeles, Particle Beam Physics Laboratory

AE131 Harmonic Nonlinear Inverse Compton Scattering

Nonlinear ICS by $a_0 > 1$, CO_2 (9.2 μ m)laser with Nd:YAG laser(1 μ m)

BNL ATF user meeting, March 23, 2024 yr

Y. Sakai, O. Williams, A. Fukasawa, J. Rosenzweig, UCLA Collaborator: Z. Zhong, BNL NSLS

Funding source: DOE Accelerator Stewardship (DE-SC0009914)

Experiment Goala of AE131 Harmonic Nonlinear Inverse Compton Scattering AE70: Basic study on the nonlinear Compton & AE87: Hard X-ray ICS by Nd: YAG laser

Strong field physics: Bi-harmonic Compton interaction

Solution: X-ray OAM investigation: Higher order harmonics by circular polarized CO₂ laser

O Hard X-ray optics developments: DDS measurement & Focusing, Collimation

Nonlinear ICS: $a_L \sim 1^*$, Transverse motion \rightarrow Relativistic, nontrivial longitudinal oscillation Slow down electron's velocity, or Effective mass increase

Bi-harmonic nonlinear Compton interaction

Numerically calculated Lienard-Wiechert potential $E_{LW,x}(t_{screen})$ on (x, y, z) = (0, 0, 0)

Numerical estimate of bi-harmonic spectrum by ATF parameter (CO₂: 9.2 µm, Nd: YAG 1064 nm)

Only CO₂'s component

Bi-harmonic YAG's component

Experimental set up for both YAG laser ICS in ATF

Í

Input of CO₂ laser and YAG laser are opposite CO₂ laser final focusing optic has D3/8 inch hole for YAG laser path

Si hent crystal (spectrome

MCP (screen)

YAG laser ICS optics, e-beam timing method established:

Pinhole, OTRt or Si at I.P.

Electron-beam-controlled deflection of near-infrared laser in semiconductor plasma, Y. Sakai, M. Polyanskiy, M. Babzien et. al. J. Appl. Phys. 133, 143102 (2023)

Experiment# AE131 Harmonic nonlinear Compton (2023yr-)

Rebuilding nonlinear Compton set up For alignment and timing of a both lasers:

Upgraded CO₂ ICS components worked well unexpectedly in 2023yr Oct-Nov run time

 $\downarrow\downarrow$

Summary of major results and/or critical experimental preparations to date

Observed harmonics of linearly polarized ICS X-ray:

Ti 50 um filtering

e-beam energy 60 MeV CO_2 laser wavelength 9.2 μm

Beam Gaussian parameters for numerical estimate \rightarrow Normalized emittance: 2 [mm mrad] E-beam $\sigma_{e,r}$ at I.P.: 30 [um] E-beam pulse length σ : 3 [ps]

CO₂ laser $\sigma_{L,r}$ at I.P. 30 [um] CO₂ laser pulse length, FWHM: 2 [ps]

♦ Outer ring at 5 [mrad]: Fundamental

♦ Off axis 2 peak: 2nd harmonic

♦ On-axis: 3rd harmonic

Estimated normalized vector potential: $a_{L,0} \sim 1$

Summary of major results

Owing to newly installed ATF's polarization rotator of multi TW CO₂ laser rotator $(2 \times 22.5 \text{ deg rotation} + \text{wave plate mirror})$

Quick testing: Circularly polarized ICS \rightarrow

2nd harmonic X-ray verified

2nd

X-ray

Low energy shot

 $a_{L,0} \sim 0.6$

3 J shot $a_{L.0} \sim 1.0$

6 J shot $1 < a_{L.0} < 1.5$

10

20

Intensity [arb. unit]

0.5

Normalized intensity

0.8 0.6 0.4 0.2

-20

-10

***Although, 50% of laser flux goes through a on-axis hole

Experimental plans for the next year

Recover Nd YAG ICS (with the CO₂ optics) set up (Includes some sub 100 keV detector testing) {Next run time in 2024yr}

- **Bi-harmonic Compton interaction initial test {2025yr}**
- OAM study (spectrum measurements) Circularly polarized CO₂ laser at a_{L.0} 1.5-2.0 case {2025yr}
- **Hard X-ray optics test at 30 keV and then 87.5 keV {2025yr 2026yr}**

Summary of products delivered from the work to date

- K Electron-beam-controlled deflection of near-infrared laser in semiconductor plasma, Y. Sakai, M. Polyanskiy, M. Babzien et. al. J. Appl. Phys. 133, 143102 (2023)
- **Hard X ray inverse Compton scattering at photon energy of 87.5 keV (To be submitted)**

Electron Beam Requirements

Parameter	Units	Typical Values	Comments	Requested Values
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values	70 MeV
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to provide bunch lengths down to the ~10 fs level	
Transverse size at IP (σ)	μm	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	30 µm
Normalized Emittance	μm	1 (at 0.3 nC)	Variable with bunch charge	2 mm mrad
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed	1
Trains mode		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	

CO₂ Laser Requirements

Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO ₂ Regenerative Amplifier Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2 µm
	Peak Power	GW	~3		
	Pulse Mode		Single		
	Pulse Length	ps	2		
	Pulse Energy	mJ	6		
	M ²		~1.5		
	Repetition Rate	Hz	1.5	3 Hz also available if needed	
	Polarization		Linear	Circular polarization available at slightly reduced power	
CO ₂ CPA Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2 µm
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	5	~5 TW operation will become available shortly into this year's experimental run period. A 3-year development effort to achieve >10 TW and deliver to users is in progress.	> = 2
	Pulse Mode		Single		Single
	Pulse Length	ps	2		2
	Pulse Energy	J	~5	Maximum pulse energies of >10 J will become available within the next year	< 10
	M ²		~2		
	Repetition Rate	Hz	0.05		0.01
	Polarization		Linear	Adjustable linear polarization along with circular polarization can be provided upon request	Linear & Circular

Other Experimental Laser Requirements

Ti:Sapphire Laser System	Units	Stage I Values	Stage II Values	Comments	Requested Values
Central Wavelength	nm	800	800	Stage I parameters are presently available and setup to deliver Stage II parameters should be complete during FY22	
FWHM Bandwidth	nm	20	13		
Compressed FWHM Pulse Width	fs	<50	<75	Transport of compressed pulses will initially include a very limited number of experimental interaction points. Please consult with the ATF Team if you need this capability.	
Chirped FWHM Pulse Width	ps	≥50	≥50		
Chirped Energy	mJ	10	200		
Compressed Energy	mJ	7	~20	20 mJ is presently operational with work underway this year to achieve our 100 mJ goal.	
Energy to Experiments	mJ	>4.9	>80		
Power to Experiments	GW	>98	>1067		

Nd:YAG Laser System	Units	Typical Values	Comments	Requested Values
Wavelength	nm	1064	Single pulse	1064
Energy	mJ	5		5 (200 mJ at I.P.)
Pulse Width	ps	14		FWHM 14
Wavelength	nm	532	Frequency doubled	
Energy	mJ	0.5		
Pulse Width	ps	10		

Special Equipment Requirements and Hazards

• None: All item has been registered in ESR ver 2023yr

Experimental Time Request

CY2024 Time Request

Capability	Setup Hours	Running Hours
Electron Beam		2 weeks
NIR Laser	1 weeks	2 weeks
LWIR Laser		2 weeks

Total Time Request for the 3-year Experiment (including CY2024-26)

Capability	Setup Hours	Running Hours
Electron Beam		2 weeks X 6 = 480 hours
NIR Laser		(2 weeks X 1 = 480 hours)
LWIR Laser		(2 weeks X 5 = 480 hours)

Single shot DDS measurement at X-ray energy of 87.5 keV<u>quantitative study</u> → Thick Laue Bent Crystal Efficiency > Bandwidth (Collaboration with NSLS II 150 keV section, Z. Zhong)

Multi layer crystal: 5 – 20 keV (CO₂'s ICS component) *Thick crystal:* 20 keV – 200 keV (YAG's ICS component)

- * Radius of curvature R: 2.5 m
- ***** Thickness: 1 mm
- ***** Bragg angle at 85keV: ~ 22 mrad
- * Crystal to MCP screen 0.3 m
- * Expected dispersion at screen: 10-20 mm:
- ***** Band width: ~ 10 keV
- * <u>Reflectivity (Efficiency): ~10%</u>

Experiment

AE87 → Result: Observed attenuation of 87.5 keV Hard X-ray, in a single shot (10⁵-10⁶⁻⁷ photons / shot)

★ No-Filter

10

75₁₀

-5 0 5

Radiation angle x [mrad]

75₋₁₀

-5 0 5

Radiation angle x [mrad]

Report to be submitted soon:

Hard X-ray inverse Compton scattering at photon energy of 87.5 keV

Sufficient contrast of radiation pattern of YAG laser ICS observed in a single shot

10

No Filter Ti 50 um Al 250 um Al 1000 um 20 140 20 2.5 20 1.420 0.12 120 0.1 Photon energy [keV] Photon energy [keV] Photon energy [keV] Intensity [arb. unit] Intensity [arb. unit] Photon energy [keV] $a_{L,0} = 0.6$ 10 10 0.6 0.4 5 5 0.5 0.02 0.2 20 Δ Δ Δ 0 5 5 5 5 -5 0 0 -5 0 -5 0 -5 Radiation angle x [mrad] Radiation angle x [mrad] Radiation angle x [mrad] Radiation angle x [mrad] Numerical Calculation 20 20 120 4.5 20 0.3 Index \rightarrow 100 0.25 Photon energy [keV] Intensity [arb. unit] Photon energy [keV] Intensity [arb. unit] 15 Intensity [arb. unit] Photon energy [keV] Intensity [arb. unit] 15 15 0.2 $a_{L,0} = 1.0$ 2.560 10 10 1.5 40 0.1 5 **No-Filter** 20 0.5 0.05 0.5 Ti 50 um Δ Ω 0 Δ Λ 5 -5 0 5 -5 0 5 -5 0 5 -5 0 Al 250 um Radiation angle x [mrad] Radiation angle x [mrad] Radiation angle x [mrad] Radiation angle x [mrad] Al 1000 mm 20 20 120 20 2.5 0.6 20 Photon energy [keV] 2 01 100 Photon energy [keV] 2 2 Photon energy [ke V] 0.5 Intensity [arb. unit] Intensity [arb. unit]).5 0.4 0.3 0.3 [arp. mit] 0.2 Intensity [arb. unit] Photon energy [keV] 15 80 $a_{L,0} = 1.5$ 60 10 40 5 5 20 0.1 0 0 0 ſ 0 5 C -5 0 5 -5 0 5 -5 0 5 -5 0 Radiation angle x [mrad] Radiation angle x [mrad] Radiation angle x [mrad]

Radiation angle x [mrad]

2023yr, Oct-Nov run

3rd harmonic + higher order components

(***Although, 50% of laser flux goes through a on-axis hole) >= 3rd Harmonic observed:

Al 1000 μm High energy X-ray filtering

Estimated normalized vector potential at Compton I.P.: $a_{L,0} \sim 1$

