

AE128: Ionization Currents and Secondary Radiation from Two-Color Pulses at Long Laser Wavelengths

Proposal # 312798

Funding Status: NRL Base Program, Received

Alexander Englesbe, Justin Rieman, Michael Helle, Daniel Gordon
Plasma Physics Division, Naval Research Laboratory
Jessica Peña
National Science Foundation, MPS-Ascend Postdoctoral Fellowship
Mikhail Polyanskiy, Igor Pogorelsky, Marcus Babzien, William Li, Dismas Choge
Accelerator Test Facility, Brookhaven National Laboratory

Distribution Statement A: Approved for public release; distribution is unlimited.

- Map wavelength dependence of air ionization
- Use a two-color pulse to coherently control ionization currents – make it easier to interpret diagnostics based on secondary radiation
- Secondary radiation = microwaves, THz, and Brunel harmonics
- Link early and late plasma characteristics with concurrent measurements of the plasma size, density, and optical emission spectrum
- Integrate LWIR results in comparison study with NIR, SWIR, MWIR wavelengths with different lasers (Ti:S and OPA)

Ionization Currents Determine Secondary Radiation

- Optical field ionization by intense laser pulses occurs in the tunneling or multiphoton regime – Keldysh theory
- For ionization of atmospheric air, traditional NIR sources ionize via multiphoton
- Long wavelengths are needed to drive tunneling ionization in air
- The liberation of electrons constitutes an ionization current, whose time dependence can be step-like (tunneling) with each laser field maximum, or vary slowly with the laser envelope (multiphoton)
- The relative phase of a two-color pulse changes the shape of the laser electric field waveform, and thus the ionization currents

I. Babushkin, J. Mod. Opt. 64(10), 1078 (2017).

3

Ionization Currents Determine Secondary Radiation

- Optical field ionization by intense laser pulses occurs in the tunneling or multiphoton regime – Keldysh theory
- For ionization of atmospheric air, traditional NIR sources ionize via multiphoton
- Long wavelengths are needed to drive tunneling ionization in air
- The liberation of electrons constitutes an ionization current, whose time dependence can be step-like (tunneling) with each laser field maximum, or vary slowly with the laser envelope (multiphoton)
- The relative phase of a two-color pulse changes the shape of the laser electric field waveform, and thus the ionization currents

I. Babushkin, J. Mod. Opt. 64(10), 1078 (2017).

First BNL Experiments Feb-March 2024

- Second harmonic generation by type-1 phase matching in GaSe
- Optical setup co-polarizes 1ω and 2ω fields by rotating 2ω polarization by 90 degrees
- Other diagnostics viewing the air plasma: d-dot probe, visible camera, spectrometers for laser harmonics and plasma OES

NRL PPD

Input 9.2 µm Profile

OAP Focal Spot

Input 4.6 µm Profile

- Good input beam quality led to \sim 70 µm FHWM focal spot
- Keldysh parameter ~ 0.04, focal intensity ~ 10^{14} W/cm²
- Achieved sufficient SHG conversion efficiency (~7%) for two-color pulse
- GaSe crystal quality is not great note structure in 2ω profile
- ~50% energy throughput due to reflections lose ~30% pulse energy on each crystal surface

- Collisional ionization by second harmonic
- Microwave radiation amplitude likely upholds ponderomotive scaling
- No evidence of coherent superposition of laser harmonics
- Did not observe Brunel harmonics or nonlinear harmonic generation. 2.2 μm was the longest wavelength we could measure
- Spectrometers, interferometer will benefit from new alignment procedures

Second Harmonic Field Mediates Collisional Ionization

Two-Color Enhancement Absent for Microwave Radiation

- Microwave amplitude is large considering 15 GW peak power (~30 mJ going into focusing optic in 2 ps pulse) – expected from ponderomotive scaling
- With a NIR laser pulse peak power of 15 GW in similar focusing geometry microwave peak power would probably not exceed noise floor without amplification
- When two-color pulse is properly phased, observe amplitude enhancement and spectral modulations (see NIR, SWIR examples)
- We did not see amplitude enhancement or change in spectrum during delay stage scans
- Careful analysis required

Two-Color Enhancement Absent for Microwave Radiation

- With a NIR laser pulse peak power of 15 GW in similar focusing geometry microwave peak power would probably not exceed noise floor without amplification
- When two-color pulse is properly phased, observe amplitude enhancement and spectral modulations (see NIR, SWIR examples)
- We did not see amplitude enhancement or change in spectrum during delay stage scans
- Careful analysis required

Future Plans

NRL PPD

- Need to work on theory and simulation to explain collisional ionization
 - HITRAN species identification
 - CHMAIR+SPARC simulate air chemistry in time (and space)
- Expand scope of experiments:
 - Continue working on original idea relative phase control of a two-color pulse
 - Explore physics of collisional ionization existing diagnostics might cover this
- Each of the above will likely require distinct but similar setups
 - Relative phase control eliminate harmonic beamsplitters, acquire dual-wavelength waveplate
 - Collisional ionization keep current Mach-Zehnder-like setup
- Increase focal intensity or lengthen confocal parameter = add ability to vary f-number reflective beam expanders
- Vary pressure and gas species to enhance/diminish collisional ionization

Future Plans

- CO₂ laser operating point from first experiments is good
 - Keep 13 mm Teflon limiting aperture
 - ~70-150 mJ pulse energy delivered to experiment worked well
- Will use AR-coated ZGP instead of uncoated GaSe for second harmonic generation increase energy throughput
- Test THz detector at NRL

Conference Presentations:

• "Ionization of Air by Intense Long Wave Infrared Two-Color Laser Pulses", Directed Energy Professional Society Science and Technology Symposium, May 2024

Parameter	Unit s	Typical Values	Comments	Requested Values
Beam Energy	MeV	50-65	<i>Full range is ~15-75 MeV with highest beam quality at nominal values</i>	
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to provide bunch lengths down to the ~10 fs level	
Transverse size at IP (σ)	μ m	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	
Normalized Emittance	μm	1 (at 0.3 nC)	Variable with bunch charge	
Rep. Rate (Hz)	Hz	1.5	<i>3 Hz also available if needed</i>	
Trains mode		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	

CO₂ Laser Requirements

Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO ₂ Regenerative Amplifier Beam	Wavelength	μ m	9.2	Wavelength determined by mixed isotope gain media	
	Peak Power	GW	~3		
	Pulse Mode		Single		
	Pulse Length	ps	2		
	Pulse Energy	mJ	6		
	M ²		~1.5		
	Repetition Rate	Hz	1.5	3 Hz also available if needed	
	Polarization		Linear	Circular polarization available at slightly reduced power	
CO ₂ CPA Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2 microns
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	5	~5 TW operation will become available shortly into this year's experimental run period. A 3-year development effort to achieve >10 TW and deliver to users is in progress.	< 100 GW
	Pulse Mode		Single		Single
	Pulse Length	ps	2		2 ps
	Pulse Energy	J	~5	Maximum pulse energies of >10 J will become available within the next year	~ 100-150 mJ
	M ²		~2		
	Repetition Rate	Hz	0.05		0.05
	Polarization		Linear	Adjustable linear polarization along with circular polarization can be provided upon request	Linear

Other Experimental Laser Requirements

	I~~*
NRL	PPD

Ti:Sapphire Laser System	Units	Stage I Values	Stage II Values	Comments	Requested Values
Central Wavelength	nm	800	800	Stage I parameters are presently available and setup to deliver Stage II parameters should be complete during FY22	800 nm
FWHM Bandwidth	nm	20	13		
Compressed FWHM Pulse Width	fs	<50	<75	Transport of compressed pulses will initially include a very limited number of experimental interaction points. Please consult with the ATF Team if you need this capability.	~ 50 fs
Chirped FWHM Pulse Width	ps	≥50	≥50		
Chirped Energy	mJ	10	200		
Compressed Energy	mJ	7	~20	20 mJ is presently operational with work underway this year to achieve our 100 mJ goal.	< 7 mJ
Energy to Experiments	mJ	>4.9	>80		< 4 mJ
Power to Experiments	GW	>98	>1067		<< 100 GW

Nd:YAG Laser System	Units	Typical Values	Comments	Requested Values
Wavelength	nm	1064	Single pulse	
Energy	mJ	5		
Pulse Width	ps	14		
Wavelength	nm	532	Frequency doubled	
Energy	mJ	0.5		
Pulse Width	ps	10		

- CO₂ laser
 - Keep 13 mm Teflon limiting aperture in place
- Ti:S laser
- New: Small vacuum/pressure vessel, gas cylinders
- Microwave scattering diagnostic: already on ESR, but we may need to increase the power transmitted in free space

CY2024 Time Request

Capability	Setup Hours	Running Hours
Electron Beam		
NIR Laser	0	0
LWIR Laser	0	0

Total Time Request for the 3-year Experiment (including CY2024-26)

Capability	Setup Hours	Running Hours
Electron Beam		
NIR Laser	120	120
LWIR Laser	120	120