

# High-intensity laser interactions with near-critical density plasmas: NP-315758

#### Zulfikar Najmudin, Nicholas Dover, Oliver Ettlinger

John Adams Institute for Accelerator Science, Imperial College London

#### **Charlotte Palmer**

Centre for Plasma Physics, Queen's University Belfast, Belfast, United Kingdom

**ATF User Meeting**, 27th March 2024

Funding: STFC ST/V001639/1 (Received)







#### Motivation for laser-driven ion sources



Z. Taheri-Kadkhoda et al. Radiation Oncology 3 (2008)

Laser driven ion sources increasingly attractive due to high source energy and short bunch length

For example, these sources are well suited for high dose rate radiobiology e.g. FLASH

### Imperial College London

Aymar et al. Frontiers in

Physics 8, 567738 (2020)

#### Important characteristics of laser driven source for applications

- High energy
- High flux
- Different ion species
- High repetition rate
- Minimal debris

Gaseous targets are a great choice, if high energy, high flux ions can be produced...





#### Imperial College London for Accelerator Science Physics of laser driven ion sources difficult to diagnose directly



#### Laser propagation in underdense plasma

Acceleration of ions at critical density surface and plasma boundary

Propagation of "fast" electrons in the target

Ion sources undergo multiple nonlinear and dynamic processes, near-impossible to see experimentally







#### Imperial College London Diagnosing laser driven ion sources - a new approach?

Nearly all laser driven ion source experiments performed in the near-IR Time

Typical dynamical scales ~10 fs

Can we diagnose it?



| Time      | Length    | Density                             |
|-----------|-----------|-------------------------------------|
| ~10 fs    | ~1 µm     | >~10 <sup>21</sup> cm <sup>-3</sup> |
| Too quick | Too short | Too dense                           |
|           |           |                                     |

- Rely on simulations, many assumptions
  - Reduced dimensionality
  - Uncertainty over experimental parameters
  - Can only verify by looking at certain outputs e.g. ion beam





#### Imperial College London Exploiting dimensional scaling of collisionless laser-plasmas

Collisionless laser plasmas can be defined using reference frequency\*: Time Length Density

$$\tilde{t} = \omega_L t \qquad \qquad \tilde{x} = -\frac{t}{2}$$

~10 fs



\*if e.g. ionisation/QED not important





#### Imperial College London A unique facility at the ATF for investigating ion source physics

Utilising the ATF's NIR and MWIR laser facilities, we have a unique and exciting platform for investigating ion source physics dynamics

Enables *direct dynamic* observation of fundamental scale-independent processes driving all laser driven ion sources



Previously: blur due to ionisation and plasma dynamics when temporal overlap between drive and probe

• CO<sub>2</sub> laser - 2 ps, 9.2  $\mu$ m wavelength drive laser for ion acceleration @ 10<sup>19</sup> cm<sup>-3</sup>

• TiS laser - <100 fs, 800 nm wavelength laser ideal for optical probing such densities



Now: clean images when overlapping drive and probe, allowing measurements of evolving overdense LPI





### Proposed Objectives

acceleration:

- Laser propagation in underdense plasmas preceding the critical surface 1.
- 2. The dynamics of ion acceleration by shock structures
- 3. Particle beam propagation through plasmas

#### Imperial College London

We plan to exploit this setup to investigate three regimes of importance to ion





#### Proposed Investigation

acceleration:

- Laser propagation in underdense plasmas preceding the critical 1. surface
- 2. The dynamics of ion acceleration by shock structures
- 3. Particle beam propagation through plasmas

#### Imperial College London

We plan to exploit this setup to investigate three regimes of importance to ion





#### Laser propagation in underdense plasmas

To fully understand the acceleration process laser conditions at the critical surface must be fully understood

- relativistic self-focussing and dispersion
- laser hosing •
- filamentation

### Imperial College London

#### A number of effects can occur as a laser propagates an underdense plasma:



Preliminary data taken during AE100 <sup>9</sup>







#### Laser propagation in underdense plasmas

- These processes affect laser conditions at critical density surface
  - uncertainty in laser energy, focal spot size and shape
  - Can enhance or degrade acceleration performance Self focusing



### Imperial College London







## Experimental investigation of these concepts

- We will use the unique setup to investigate these processes: Measure plasma dynamics and transmitted laser properties
  - Vary density and density gradients
  - ➡ Vary laser parameters

We will directly image these phenomena at near-critical densities, not possible with near-IR drivers

## Imperial College London

Example with near-IR drive: LPI completely obscured due to high densities







#### Proposed Investigation

acceleration:

Laser propagation in underdense plasmas preceding the critical surface 1.

#### 2. The dynamics of ion acceleration by shock structures

3. Particle beam propagation through plasmas

### Imperial College London

We plan to exploit this setup to investigate three regimes of importance to ion





#### ATF acceleration conditions

CO<sub>2</sub> laser allows near-critical investigations, enabling the study of shock acceleration mechanisms

Changing the laser and target conditions enables transition of hole-boring (HB) and collisionless shock acceleration (CSA)

#### Imperial College London

$$P_{R} = n_{c}m_{e}c^{2}a_{0}^{2}$$
$$P_{Th} = n_{e}m_{e}c^{2}\left[\sqrt{1 + \frac{a_{0}^{2}}{2}} - 1\right]$$







#### Proposed areas of study

A number of interesting areas of study:

 Continue work of AE100 and make first detailed optical studies of the ion acceleration phase



#### Imperial College London



-> sub 100 fs probe needed





#### Proposed areas of study

A number of interesting areas of study:

- First detailed optical studies of the ion acceleration phase
- Interplay between CSA and HB and how to control this











#### Proposed areas of study

A number of interesting areas of study:

- First detailed optical studies of the ion acceleration phase
- Interplay between CSA and HB and how to control this
- Improved ion acceleration performance at multi-TW level











#### Proposed Investigation

acceleration:

- Laser propagation in underdense plasmas preceding the critical surface 1.
- 2. The dynamics of ion acceleration by shock structures

#### 3. Particle beam propagation through plasmas

#### Imperial College London

We plan to exploit this setup to investigate three regimes of importance to ion





### Beam propagation through plasmas

- Energetic electrons are generated in LPI and propagate into upstream plasma
- Their current greatly exceeds Alfvén limit -> balanced by return current
- These counter propagating populations are subject to collisionless instabilities, such as the current filamentation instabilities



- Affects electron beam transport
- Can degrade ion generation
- Proposed mechanism for magnetic field generation in some astrophysical scenarios











#### Beam propagation through plasmas

Studies with near-IR cannot measure this in dense plasmas directly, only through subsequent impact on particle

#### The ATF can study the same physics, but on a different scale:

- 1) Density achievable by gas jets and id for optical probing
- 2) Filament 10x wider resolvable using
- 3) Instability driven over 10x longer time time evolution can captured using Tis

### **Imperial College** London

|       |                                         | CO₂ laser@<br>BNL           | Equivalent<br>NIR    |
|-------|-----------------------------------------|-----------------------------|----------------------|
|       | <i>λ</i> <sub>L</sub> (μm)              | 9.2                         | 0.8                  |
| es    | <b>a</b> <sub>0</sub>                   | 3                           | 3                    |
|       | <i>t</i> <sub>L</sub> (fs)              | 2000                        | 200                  |
|       | <i>n</i> e (cm <sup>-3</sup> )          | <b>1.3x10</b> <sup>19</sup> | 1.7x10 <sup>21</sup> |
| deal  | Ye                                      | ~3                          | ~3                   |
|       | <b>α=n</b> <sub>b</sub> /n <sub>e</sub> | ~0.1                        | ~0.1                 |
| g TiS | <i>λ<sub>Fil</sub>~2πc/ω</i> p<br>(μm)  | ~10                         | ~1                   |
| 9 -   | <i>T<sub>f</sub></i> (fs)               | ~10                         | ~1                   |
| 3     | e-folds                                 | ~200                        | 200                  |







#### Beam propagation through plasmas

#### Previously observed the *endpoint* of current filamentation instability, measuring filamentary density structures after the end of LPI



Previous measurements were limited because growth phase was not resolvable with old YAG probe. Ti:S will enable time-resolved characterisation of filamentation.

### Imperial College London

N. Dover, in preparation



#### Summary - NP-315758 Proposal

- Proposal builds on experience of AE66 and AE100 experiments, exploiting improved laser capabilities
- Objective is to investigate each stage of the ion acceleration process:
  - Laser propagation dynamics in underdense plasmas
  - Acceleration physics at the critical surface
  - Particle beam propagation in plasmas





## Thank you for listening. Questions?







#### Electron Beam Requirements

| Parameter                          | Units | Typical Values                                 | Comments                                                                             |
|------------------------------------|-------|------------------------------------------------|--------------------------------------------------------------------------------------|
| Beam Energy                        | MeV   | 50-65                                          | Full range is ~1                                                                     |
| Bunch Charge                       | nC    | 0.1-2.0                                        | Bunch length &                                                                       |
| Compression                        | fs    | Down to 100 fs (up<br>to 1 kA peak<br>current) | A magnetic but<br>~100 fs. Beam<br>compression re<br>NOTE: Further<br>lengths down t |
| Transverse size at IP ( $\sigma$ ) | μm    | 30 – 100<br>(dependent on IP<br>position)      | It is possible to<br>permanent ma                                                    |
| Normalized Emittance               | μm    | 1 (at 0.3 nC)                                  | Variable with b                                                                      |
| Rep. Rate (Hz)                     | Hz    | 1.5                                            | 3 Hz also availe                                                                     |
| Trains mode                        |       | Single bunch                                   | Multi-bunch m                                                                        |

# Electron beam not required

|                                                                                                                        | <b>Requested Values</b> |
|------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 5-75 MeV with highest beam quality at nominal values                                                                   |                         |
| emittance vary with charge                                                                                             |                         |
| nch compressor available to compress bunch down to<br>quality is variable depending on charge and amount of<br>quired. |                         |
| compression options are being developed to provide bunch<br>o the 10 fs level                                          |                         |
| achieve transverse sizes below 10 um with special<br>gnet optics.                                                      |                         |
| unch charge                                                                                                            |                         |
| able if needed                                                                                                         |                         |
| ode available. Trains of 24 or 48 ns spaced bunches.                                                                   |                         |







#### CO<sub>2</sub> Laser Requirements

| Configuration                                                                               | Parameter             | Units | <b>Typical Values</b> | Comments                                                                                                                      | <b>Requested Values</b> |
|---------------------------------------------------------------------------------------------|-----------------------|-------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| CO2 Regenerative Amplifier Beam                                                             | Wavelength            | mm    | 9.2                   | Wavelength determined by mixed isotope gain media                                                                             |                         |
|                                                                                             | Peak Power            | GW    | ~3                    |                                                                                                                               |                         |
|                                                                                             | Pulse Mode            |       | Single                |                                                                                                                               |                         |
|                                                                                             | Pulse Length          | ps    | 2                     |                                                                                                                               |                         |
|                                                                                             | Pulse Energy          | mJ    | 6                     |                                                                                                                               |                         |
|                                                                                             | <b>M</b> <sup>2</sup> |       | ~1.5                  |                                                                                                                               |                         |
|                                                                                             | Repetition Rate       | Hz    | 1.5                   | 3 Hz also available if needed                                                                                                 |                         |
|                                                                                             | Polarization          |       | Linear                | Circular polarization available at slightly reduced power                                                                     |                         |
| CO <sub>2</sub> CPA Beam                                                                    | Wavelength            | mm    | 9.2                   | Wavelength determined by mixed isotope gain media                                                                             |                         |
| Note that delivery of full power pulses to the<br>Experimental Hall is presently limited to | Peak Power            | TW    | 5                     | ~5 TW operation will become available shortly into this year's experimental run period A 3-year development effort to achieve | 5TW                     |
|                                                                                             | Pulse Mode            |       | Single                |                                                                                                                               |                         |
|                                                                                             | Pulse Length          | ps    | 2                     |                                                                                                                               | 2ps                     |
|                                                                                             | Pulse Energy          | J     | ~5                    | Maximum pulse energies of >10 J will become available within the next year                                                    | 5                       |
|                                                                                             | <b>M</b> <sup>2</sup> |       | ~2                    |                                                                                                                               |                         |
|                                                                                             | Repetition Rate       | Hz    | 0.05                  |                                                                                                                               | Highest available       |
|                                                                                             | Polarization          |       | Linear                | Adjustable linear polarization along with circular polarization can be provided upon request                                  | LP/CP                   |

# Imperial College London





#### Other Experimental Laser Requirements

|                                |       | Stage I | Stage II |                                                                                                                 |               |
|--------------------------------|-------|---------|----------|-----------------------------------------------------------------------------------------------------------------|---------------|
| Ti:Sapphire Laser System       | Units | Values  | Values   | Comments                                                                                                        | Requested Val |
| Central Wavelength             | nm    | 800     | 800      | Stage I parameters should be achieved by mid-2020, while Stage II parameters are planned for late-2020.         | <b>√</b>      |
| FWHM Bandwidth                 | nm    | 20      | 13       |                                                                                                                 | <b>√</b>      |
| Compressed FWHM Pulse<br>Width | fs    | <50     | <75      | Transport of compressed pulses will initially include a very limited number of experimental interaction points. | ≤75           |
| Chirped FWHM Pulse Width       | ps    | ≥50     | ≥50      |                                                                                                                 |               |
| Chirped Energy                 | mJ    | 10      | 200      |                                                                                                                 |               |
| Compressed Energy              | mJ    | 7       | 100      |                                                                                                                 | 7             |
| Energy to Experiments          | mJ    | >4.9    | >80      |                                                                                                                 | 4.9           |
| Power to Experiments           | GW    | >98     | >1067    |                                                                                                                 | <i>99</i>     |

| Nd:YAG Laser System | Units | <b>Typical Values</b> | Comments          | Requested Valu |
|---------------------|-------|-----------------------|-------------------|----------------|
| Wavelength          | nm    | 1064                  | Single pulse      |                |
| Energy              | mJ    | 5                     |                   | 5mJ+           |
| Pulse Width         | ps    | 14                    |                   |                |
| Wavelength          | nm    | 532                   | Frequency doubled | X              |
| Energy              | mJ    | 0.5                   |                   | X              |
| Pulse Width         | ps    | 10                    |                   | X              |



| Jes |    |
|-----|----|
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
| 100 |    |
| 162 |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     |    |
|     | 25 |
|     |    |



### Special Equipment Requirements and Hazards

- Electron Beam N/A
- CO<sub>2</sub> Laser
  - Please note any specialty laser configurations required here:
- Ti:Sapphire and Nd:YAG Lasers
  - Please note any specialty non-CO<sub>2</sub> laser configurations required here:
    - YAG amplifier for highest possible energies
- Hazards & Special Installation Requirements
  - New magnet installation for particle spectrometer 0.6T (already ordered)
  - HV for time-of-flight diamond detector







#### Experimental Time Request

#### CY2024 Time Request

| Capability                | Setup Hours | Running Hours |
|---------------------------|-------------|---------------|
| Electron Beam Only        |             |               |
| Laser* Only (in FEL Room) | 40          | 120           |
| Laser* + Electron Beam    |             |               |

#### Time Estimate for Full 3-year Experiment (including CY2024-26)

| Capability                | Setup Hours | Running Hours |
|---------------------------|-------------|---------------|
| Electron Beam Only        |             |               |
| Laser* Only (in FEL Room) | 120         | 360           |
| Laser* + Electron Beam    |             |               |

\* Laser = Near-IR or LWIR ( $CO_2$ ) Laser

# Imperial College London





#### Experimental Layout



