Radiation-hardness Studies

Prakhar Garg

TIC meeting January 22, 2024

Introduction:

Useful Links:

Needs of rad-hard studies for various subsystems: Link to Indico
ePIC Radiation Doses and Particle Fluence can be found: Link to wiki

It's an attempt to collect all the available Information and try to come-up with a coherent unified picture

With so many systems, it's most useful that they all estimate the red-hardness in a consistent way

A broad view:

- Synergies: SiPM's and read out electronics is one of the "most popular" and critical components among several detectors

There needs to be a defined constant "safety factor" across all detector subsystems [(10 years)*(6 month running period)*(100% machine/detector efficiency)*(Highest Lumi.)]X Safety Factor?

If one uses the same technology as various R-Z positions

Its better to pick the highest number as a benchmark

Just as an Example:

MPGD layers					
Barrel	mRwell @ R ~ 72 cm				
	MMG @ R ~ 50 cm				
Hadron end cap	mRwell @ z ~ 148 cm				
	mRwell @ z ~ 163 cm				
Electron end cap	mRwell @ z ~ - 112.5 cm				
	mRwell @ z ~ -122.5 cm				

Radiation dose (10 years Phys) EM radiation

~0.054 krads – 0.3 krads

~ 0.073 krads – 0.217 krads

~0.85 krads -- 51.2 krads

~0.96 krads – 52.6 krads

~0.07 krads – 3.2 krads

~ 0.07 krads – 4.2 krads

Collect Information for Consistency:

Detectors	Comm ent on Missin	1 MeV Eq. Neutron Fluence		EM Dose	
		DIS	e/p Beam gas	DIS	e/p Beam gas
SVT					
MPGDs					
Backwar d ECal					
Barrel I					
Forward					
Backwar d HCal					nine
Barrel					hruiien
Forward				is mon	refficio
pfRICH			~2	rs)*lotect	
hpDIRC			(10 yes	nelae	
dRICH			mau		
AC- LGADs					
Far					
Luminosit					
Far Backwar					

Of course Different Detectors can add different components if the requirements are different because of their positions

Some Rad-Hard Test Facilities

NSUF Partner Institutions

Link: https://nsuf.inl.gov/Home/PartnerInstitutions

Contains a list of 19+ 54 Places within US with details

GIF++ at CERN

Link: https://ep-dep-dt.web.cern.ch/irradiation-facilities/gif

- 14 TBq ¹³⁷Ce source (378.37 Cu)
- Muon beam with momentum up to 100 GeV/c

Sandia National Lab, New Mexico

Gamma Irradiation Facility and Low-Dose-Rate Irradiation Facility Link: https://www.sandia.gov/research/gamma-irradiation-facility-and-low-dose-rate-irradiation-facility/

Sources: Cs-137, cobalt-60, and AmBe **Designed for Radiation Damage Studies** (US ATLAS groups have used it in the past)

NASA Space Radiation Laboratory @BNL

https://www.bnl.gov/nsrl/userguide/beam-ion-species-and-energies.php

Gamma Radiation Source Facility

Tandem Van de Graaff

Several Beam Ion Species and Energies

Oak Ridge National Lab

Link: https://www.ornl.gov/facility/imetf

Los Alamos Neutron Science Center

link:<u>https://lansce.lanl.gov/facilities/Radiation%20Effects/index.php</u>

Availability at Yale, New Haven

• AmBe ("ambee") 1Ci total [Mix of Am-241 and Be-9]

Average neutron energy: 4.2 MeV (11 max)

• Sr90 100mCi

Relatively easy access Not positioned to use right away Will require some minor rigging and planning if someone is interested to use

Although, most of the Detector systems seems to have their own favorite places already

Summary

Far-forward and Far-Backward detectors need Simulated maps.

We need to define a common "safety factor" (Even if it's 1)

All suggestions are welcome !

- I think its better to ask DSL's to fill out a pre-formatted spread sheet (w/ help from Alex)?

 - Once we have a common formatted data, It would be easy for everyone to cluster with similar goals.

