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FIG. 1. Left) Structure of the Eagle quantum processor which consists of a 6 ⇥ 3 heavy-hexagon lattice with two
additional qubits (113 and 13) added to the bottom left and right corners of the lattice. Right) Tensor network
structure used for our simulations of heavy-hex lattices, with the network structure directly reflecting the lattice. On-
site tensors �v are coloured in blue and possess physical, uncontracted, indices of dimension 2 (represented by their
dangling legs) and virtual indices of dimension � (represented by the edges of the network) which are shared with
neighboring tensors. Positive, diagonal bond tensors ⇤e live on the edges e between the site tensors and are coloured
in grey.

high-depth quantum circuit involving an infinite number of qubits.
Our work here demonstrates the e↵ectiveness of a belief propagation tensor network approach for solving

many-body dynamics problems. We anticipate our chosen methodology will find success and serve as a
benchmark when applied to problems with locally tree-like correlations and limited entanglement.
Model and Ansatz. Our focus here is on the dynamics of the Trotterized kicked transverse-field Ising model

given by the unitary
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where Z and X denote Pauli operators and hv, v
0
i indicates that v and v

0 are neighbors on the corresponding
lattice. The lattice we are concerned with is that of the ‘heavy-hex’ lattice which corresponds to a hexagonal
lattice decorated with additional qubits along the edges (see Fig. 1). The dynamics of this model was recently
simulated on the IBM Eagle quantum processor [10], which corresponds to a lattice of 6 ⇥ 3 heavy-hexagons
plus two additional qubits.
Here, in order to simulate this system on a classical computer, we adopt a tensor network approach that

respects the qubit connectivity of the heavy-hex lattice (see Fig. 1). We fix a maximum amount of entanglement
in the system by limiting the bond dimension � of the network. We then evolve our tensor network state (TNS)
by application of the gates in U(✓h) under the belief propagation (BP) approximation; referring to the resulting
TNS as a BP-approximated TNS. Unless otherwise stated, we also extract expectation values from the TNS
using belief propagation. Explicit details of our BP-based method are provided in the Methods section. The
BP method is fully controlled on trees but incurs a potentially small but uncontrolled approximation when
there are loops in the network. Our results demonstrate that for a su�ciently large lattice, even at significant
circuit depths, the correlations in this model remain ‘tree-like’ in the sense of the BP approximation giving
very accurate results. Let us present these results.
Results. We start by considering lattices with a small number of heaxy-hexagons, where an exact state vec-

tor simulation is possible and our method can be directly benchmarked (see Fig. 2). Specifically, we compute
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Motivation

Yet not clear what problems quantum computers can 
practically solve better than classical computers

Some candidates:

factoring (Shor's algorithm) or inverse problems (Grover's)
how robust to decoherence? 

1000's of qubits needed?    time to solution?

chemistry & physics simulation

    can it scale? how accurate? sampling overhead?



Motivation

Amazing devices are being built...

we should research what they are best for

Simulating quantum computers clarifies line  
between easy and hard

Tensor networks are the most powerful simulators

Sometimes tensor networks are so powerful, we can 
flip the script: quantum algorithms become  
new "quantum inspired" classical algorithms



• Motivation: Quantum Computing


• Classical Methods and Tensor Networks for 
Quantum Systems


• Entanglement of Quantum Algorithms: the 
Quantum Fourier Transform (QFT)


• Assessing Quantum Utility Claims

Today's Talk



Classical Methods

for Quantum Systems

How 'quantum' are 
classical computers?



Classical Methods for Quantum Systems

How hard is quantum mechanics?

Consider n quantum spins or qubits

quantum wavefunction Ψ
 parameters inside2n

exponentially hard to store & manipulate



Classical Methods for Quantum Systems

What's going on at Flatiron Institute 

Center for Computational Quantum Physics (CCQ)?



Classical Methods for Quantum Systems

Developing ways to break through the    

exponential quantum wall

2n

quantum Monte Carlo
high-order perturbation theory

GW methodembedding (DMFT)

neural quantum states

tensor networks

density functional theory

numerical renormalization group



Classical Methods for Quantum Systems

Developing ways to break through the    

exponential quantum wall

2n

Quantum Monte Carlo  🎲

breaks exponential by sampling

important configurations



Classical Methods for Quantum Systems

Developing ways to break through the    

exponential quantum wall

2n

Embedding / DMFT  🎯

treats small piece of system

inside solvable "bath" with mirrored properties



Classical Methods for Quantum Systems

Last but not least: tensor networks

Tensor networks:


• work directly with wavefunction


• use compression to store wavefunction


• closely mimic a quantum computer

Let's unpack these...
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Classical Methods for Quantum Systems

General wavefunction of n qubits
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X
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 s1s2s3···sn |s1s2s3 · · · sni

Amplitudes form a big tensor!
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Classical Methods for Quantum Systems

What is a tensor?
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Classical Methods for Quantum Systems

N-index tensor = shape with N lines
s1 s2 s3 s4 sN

T s1s2s3···sN =
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Low-order examples:

Joining wires means contraction:

=
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Classical Methods for Quantum Systems

N-index tensor exponential to store

s1 s2 s3 s4 sN

T s1s2s3···sN =
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Tensor version of "many-body problem"



Just as factorizing a matrix reduces cost 

(memory and compute)

<latexit sha1_base64="Mt/c6Ik3KKm+4wNiDOHcHptzhzQ="></latexit>= <latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M="></latexit>�

 is matrix rankχ

Classical Methods for Quantum Systems
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Can recursively factor (compress) a tensor as well

Classical Methods for Quantum Systems
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Classical Methods for Quantum Systems
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Advantage if internal indices small, yet accuracy is good

(small "bond dimension" or "rank"  ) χ
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Optimize by e.g. applying quantum gates

(imaginary or real time evolution)

Classical Methods for Quantum Systems

<latexit sha1_base64="T+38AM2S9CnSiJNYBwqu63jIXKA=">AAACw3icdVFNT+MwEHWzH7BlP8rukYu10UqcqqRadrkgISGkPXYlCkhNhCbutFi1naw9AVUhv4Mr/Cz+zTqhB6BlJEtPb97zs2eyQklHUfTQCd68ffd+Y/NDd+vjp89fettfT11eWoEjkavcnmfgUEmDI5Kk8LywCDpTeJbNj5r+2RVaJ3NzQosCUw0zI6dSAHkqTeZIVTJ0suYH/KIXRv2oLb4K4iUI2bKGF9udu2SSi1KjIaHAuXEcFZRWYEkKhXU3KR0WIOYww7GHBjS6tGpfXfMfnpnwaW79McRb9qmjAu3cQmdeqYEu3cteQ67rjUua7qeVNEVJaMRj0LRUnHLejIBPpEVBauEBCCv9W7m4BAuC/KC6icFrkWsNZlI146nHcVolaFxpscmqbsI4sWBm/oP1c3VmYUWdqFYaxjdr1O31g7UG7h3hgL+SBFez15K88YnL7zR+ucFVcDrox7/6e39/hodHy+1ush32ne2ymP1mh+wPG7IRE+wfu2V37D44DuaBDehRGnSWnm/sWQX1fzgd4Io=</latexit>

| i =

Efficient – only touch three small tensors per gate
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Classical Methods for Quantum Systems
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Quantum 
Computer

Tensor 
Network

prepare simple initial states

How do tensor networks mimic quantum computers?



Classical Methods for Quantum Systems
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Quantum 
Computer

Tensor 
Network

prepare simple initial states

efficiently apply gates

How do tensor networks mimic quantum computers?



Classical Methods for Quantum Systems
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Quantum 
Computer

Tensor 
Network

prepare simple initial states

efficiently apply gates

sample from wavefunction

1 1 0 1 0 0 1

How do tensor networks mimic quantum computers?
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errors make handling easier



Thought experiment:

If we put a quantum computer and a tensor network in a 
box, for what problems could we tell them apart?

Classical Methods for Quantum Systems



Application #1:

The Quantum Fourier Transform

How 'quantum' are 
quantum algorithms?



Analogy between quantum and classical so precise, 
some quantum algorithms have been classical all along

≈

Quantum Fourier transform (QFT):

Equal to network of small tensors

("MPO" tensor network)

Chen, Stoudenmire, White, PRX Quantum, arxiv:2210.08468



Consider function discretized on grid of spacing 
1
2n

Encode as tensor network state of n qubits

What does the QFT do?

"amplitude encoding" 



Quantum Fourier Transform

Performs a discrete Fourier transform on a quantum state 
(viewed as a large vector)

QFT =



Quantum Fourier Transform

Circuit for QFT can be interpreted as a tensor network

QFT =

= Hadamard gates
= controlled phase gates

Treat each column as an MPO and multiply together



Quantum Fourier Transform

QFT =

Treat each column as an MPO tensor network

and multiply these together:



Quantum Fourier Transform

QFT

Treat each column as an MPO and multiply together

≈



Quantum Fourier Transform

QFT

Treat each column as an MPO and multiply together

≈



Quantum Fourier Transform

QFT

Treat each column as an MPO and multiply together

≈



Quantum Fourier Transform

QFT

Treat each column as an MPO and multiply together

≈



Quantum Fourier Transform

QFT ≈

Treat each column as an MPO and multiply together



Quantum Fourier Transform

QFT ≈

Treat each column as an MPO and multiply together

Result is MPO of internal dimension    !

(When working to double precision)*

χ = 8

Jielun Chen

Chen, Stoudenmire, White, PRX Quantum, arxiv:2210.08468
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Compressed quantum Fourier transform

beats "fast Fourier transform" (FFT) 

Chen, Stoudenmire, White, PRX Quantum, arxiv:2210.08468

Fast 
Fourier 
Transform 
(FFT)

tim
e 

(s
)

number of grid points

2 2 2 2 2 2 2 2 2 2 2 2

QFT, 
Single 
Cosine

QFT, 
Cosine 
+ Cusps



Classical Methods for Quantum Systems

Rapidly developing topic of 

"quantum-inspired classical algorithms"

ARTICLESNATURE COMPUTATIONAL SCIENCE

such that all values of d99 in Fig. 1c are contained within the blue-
shaded area M corresponding to d(n) = min

(
� 3D(n), 207

)
 in 

equation (2). Because �99 is much smaller than the upper vertex of 

the area D at �3D(4) = 212, the interscale correlations of DNS solu-
tions are far from being saturated (more details on the Schmidt 
coefficients are provided in Supplementary Section 1).

Next we investigate how the maximal Schmidt number �99 scales 
with the Reynolds number Re (Fig. 1d). We find that �99 saturates 
in the 2D case for Re � 200. This suggests that interscale correla-
tions of 2D flows are bounded, in analogy to quantum correla-
tions in gapped 1D quantum systems with local interactions18. In 
the 3D case, �99 increases according to a power law. The NVPS for 
d(n) = min

(
� 3D(n), χ

99

)
 scales as ∼ χ

2

99

logM (Supplementary 
Section 2). Kolmogorov’s theory3 states that the number of grid 
points M = 8N must scale with the Reynolds number according to 
M ~ (!/�)3 ~ Re9/4 to resolve all spatial scales. This implies that the 
NVPS of M only scales as ∼ Re

1.42

log Re, which is a substantially 
slower increase with Re compared to the NVPS of DNS, ~M ~ Re9/4.

Tensor network algorithm. The previous results demonstrate that 
it is beneficial to find a representation of flow fields where limiting 
the amount of interscale correlations directly translates into a reduc-
tion of the NVPS. This can be achieved by expressing each veloc-
ity component in a compressed tensor network format known as a 
matrix product state (MPS) or tensor train decomposition13,14,25,26. 
Our MPS encoding of function values is chosen such that it is con-
sistent with the decomposition in equation (2) (Supplementary 
Section 2). It comprises products of N matrices Aω

n with dimension 
d(n � 1) � d(n), where 2N is the number of grid points in each spa-
tial direction, n = 1, …, N and d(0) = d(N) = 1 (refs. 27,28). The matrix 
A

ω

n is associated with a length scale Lbox/2n, and its dimension d(n) 
controls the maximum amount of correlations allowed between 
neighboring scales. The nearest-neighbor correlations are mediated 
directly by each matrix product, while correlations between further 
distant length scales can only be captured indirectly by traversing 
several matrix products. These properties make MPS well suited 
for the description of scale-local turbulent flows where correlations 
between vastly different length scales are expected to be small.

Here we consider MPSs of bond dimension � where we set 
d(n) = min

(
� 2D(n), χ

)
 in 2D and d(n) = min

(
� 3D(n), χ

)
 in 3D. 

The bond dimension � controls the level of compression in the MPS 
format. For example, the interscale correlations captured by an MPS 
with bond dimension � = 25 (� = 207) are represented by the blue-
shaded area in Fig. 1b (Fig. 1c). If � is kept constant as N increases, 
the number of MPS parameters scales logarithmically with the total 
number of grid points, resulting in an exponential reduction of the 
NVPS compared to DNS. However, we emphasize that this reduc-
tion does not truncate the range of length scales covered by the MPS 
ansatz—it only limits the amount of interscale correlations.

To fully utilize this dimensionality reduction for numerical sim-
ulations on large grids, we devise an algorithm for solving the INSE 
without leaving the compressed MPS manifold M (Matrix prod-
uct state algorithm section in the Methods). We use a second-order 
Runge–Kutta time-stepping scheme and discretize spatial deriva-
tives in the same way as the DNS solver, which utilizes an eighth-
order finite-difference stencil.

Validation of the tensor network algorithm. We now investigate 
how well the dynamics of turbulent flow are captured inside the 
MPS manifold M by comparing our algorithm against DNS for 
different compressions �. Reducing the bond dimension � reduces 
the NVPS. The analog of reducing the bond dimension in tradi-
tional DNS is to perform under-resolved DNS (URDNS), where the 
simulation is carried out on a coarse grid not covering all relevant 
length scales. URDNS can be considered as the most basic form of 
large eddy simulations29–31, where no explicit models are employed 
to account for the disregarded subgrid scales (Direct numerical sim-
ulation algorithm section in the Methods). For a fair comparison 
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Fig. 3 | 3D Taylor–Green vortex. Dynamical simulation of the INSE in 
3D for the Taylor–Green vortex and Re!=!800, as defined in the Set-up 
of numerical experiments section in the Methods. a, Vortical structures 
rendered using the standard �2 method51 are shown at times t/T0!=!0.2, 0.8, 
1.4 and 2 (left to right). The top row is for DNS on a 28!�!28!�!28 grid. Rows 
2–4 are for MPS simulations with different �, and the bottom three rows 
are for URDNS on cubic grids as indicated. b, The enstrophy �(t) (asterisks, 
crosses and circles) and the energy dissipation �(t) (lines) as a function of 
time, with E0 being the total energy at t!=!0.
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such that all values of d99 in Fig. 1c are contained within the blue-
shaded area M corresponding to d(n) = min

(
� 3D(n), 207

)
 in 

equation (2). Because �99 is much smaller than the upper vertex of 

the area D at �3D(4) = 212, the interscale correlations of DNS solu-
tions are far from being saturated (more details on the Schmidt 
coefficients are provided in Supplementary Section 1).

Next we investigate how the maximal Schmidt number �99 scales 
with the Reynolds number Re (Fig. 1d). We find that �99 saturates 
in the 2D case for Re � 200. This suggests that interscale correla-
tions of 2D flows are bounded, in analogy to quantum correla-
tions in gapped 1D quantum systems with local interactions18. In 
the 3D case, �99 increases according to a power law. The NVPS for 
d(n) = min

(
� 3D(n), χ

99

)
 scales as ∼ χ

2

99

logM (Supplementary 
Section 2). Kolmogorov’s theory3 states that the number of grid 
points M = 8N must scale with the Reynolds number according to 
M ~ (!/�)3 ~ Re9/4 to resolve all spatial scales. This implies that the 
NVPS of M only scales as ∼ Re

1.42

log Re, which is a substantially 
slower increase with Re compared to the NVPS of DNS, ~M ~ Re9/4.

Tensor network algorithm. The previous results demonstrate that 
it is beneficial to find a representation of flow fields where limiting 
the amount of interscale correlations directly translates into a reduc-
tion of the NVPS. This can be achieved by expressing each veloc-
ity component in a compressed tensor network format known as a 
matrix product state (MPS) or tensor train decomposition13,14,25,26. 
Our MPS encoding of function values is chosen such that it is con-
sistent with the decomposition in equation (2) (Supplementary 
Section 2). It comprises products of N matrices Aω

n with dimension 
d(n � 1) � d(n), where 2N is the number of grid points in each spa-
tial direction, n = 1, …, N and d(0) = d(N) = 1 (refs. 27,28). The matrix 
A

ω

n is associated with a length scale Lbox/2n, and its dimension d(n) 
controls the maximum amount of correlations allowed between 
neighboring scales. The nearest-neighbor correlations are mediated 
directly by each matrix product, while correlations between further 
distant length scales can only be captured indirectly by traversing 
several matrix products. These properties make MPS well suited 
for the description of scale-local turbulent flows where correlations 
between vastly different length scales are expected to be small.

Here we consider MPSs of bond dimension � where we set 
d(n) = min

(
� 2D(n), χ

)
 in 2D and d(n) = min

(
� 3D(n), χ

)
 in 3D. 

The bond dimension � controls the level of compression in the MPS 
format. For example, the interscale correlations captured by an MPS 
with bond dimension � = 25 (� = 207) are represented by the blue-
shaded area in Fig. 1b (Fig. 1c). If � is kept constant as N increases, 
the number of MPS parameters scales logarithmically with the total 
number of grid points, resulting in an exponential reduction of the 
NVPS compared to DNS. However, we emphasize that this reduc-
tion does not truncate the range of length scales covered by the MPS 
ansatz—it only limits the amount of interscale correlations.

To fully utilize this dimensionality reduction for numerical sim-
ulations on large grids, we devise an algorithm for solving the INSE 
without leaving the compressed MPS manifold M (Matrix prod-
uct state algorithm section in the Methods). We use a second-order 
Runge–Kutta time-stepping scheme and discretize spatial deriva-
tives in the same way as the DNS solver, which utilizes an eighth-
order finite-difference stencil.

Validation of the tensor network algorithm. We now investigate 
how well the dynamics of turbulent flow are captured inside the 
MPS manifold M by comparing our algorithm against DNS for 
different compressions �. Reducing the bond dimension � reduces 
the NVPS. The analog of reducing the bond dimension in tradi-
tional DNS is to perform under-resolved DNS (URDNS), where the 
simulation is carried out on a coarse grid not covering all relevant 
length scales. URDNS can be considered as the most basic form of 
large eddy simulations29–31, where no explicit models are employed 
to account for the disregarded subgrid scales (Direct numerical sim-
ulation algorithm section in the Methods). For a fair comparison 
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of numerical experiments section in the Methods. a, Vortical structures 
rendered using the standard �2 method51 are shown at times t/T0!=!0.2, 0.8, 
1.4 and 2 (left to right). The top row is for DNS on a 28!�!28!�!28 grid. Rows 
2–4 are for MPS simulations with different �, and the bottom three rows 
are for URDNS on cubic grids as indicated. b, The enstrophy �(t) (asterisks, 
crosses and circles) and the energy dissipation �(t) (lines) as a function of 
time, with E0 being the total energy at t!=!0.
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Figure 1: Solutions to the 3D Navier-Stokes equations for the Taylor-Green vortex config-
uration. Shown from left to right are results for times t/T0 = 0.2, 0.8, 1.4, 2.0 where T0 is a
characteristic time scale. The upper row shows results obtained via precise direct numerical
simulation (DNS) while the lower row shows results obtained using quantum-inspired tech-
niques based on matrix product states (MPS) of maximum bond dimension or rank � = 192.
(Taken from the highlighted paper; Copyright Springer Nature Ltd. (2022).)

States of this type turn out to have low entanglement for a wide class of functions f(x)
[2]. For example, both the functions f(x) = eikx and f(x) = �(x � k) give states |fi with
precisely zero entanglement, while many other smooth functions have entanglement rather
less than a typical ground state of a many-body Hamiltonian. Some functions require more
entanglement though, such as momentum-space Green’s functions for systems with large
Fermi surfaces [5] and 3D Navier-Stokes flows with high Reynolds numbers [1]—see more
below.

States with low entanglement can be represented compactly using tensor networks such
as matrix product states (MPS), originally developed for solving quantum condensed-matter
physics problems, as well as tasks like simulating quantum computers. An MPS representa-
tion of an n-qubit quantum state approximately factorizes the state into n tensors, contracted
together with “virtual” or bond indices that run over � values. The size of � determines
how entangled a state the MPS can represent and how costly they are to store and perform
computations with. Di↵erential operators such as @2/@x2 can also be easily represented
(as “MPO” tensor networks). Powerful algorithms for time evolving (such as “TDVP”) or
solving eigenvalue problems (such as “DMRG”) turn out to be essentially the same in the
continuum setting. The generalization to multiple variables is straightforward, and is just
an MPS with two physical indices on each tensor for a 2D function f(x, y) or three physical
indices for a 3D function f(x, y, z) and so on.

Let us pause to note how remarkable this is: for decades, tensor networks have been used
primarily for representing quantum many-body states which are high-dimensional functions
of discrete variables  (s1, s2, s3, . . . , sn) where the sj = 1, 2, ..., d could be spins or particle
occupations. It turns out they are just as good, if not better, at representing low-dimensional,
continuous functions f(x) too. For continuous functions, the meaning of entanglement turns
out to be rather di↵erent, and captures correlations between scales rather than correlations
between the left and right halves of a quantum system.

2

fluid simulations
Gourianov et al., Nature Comp. Sci., 2, 30-37 (2022)

4

experiments on several nuclei configurations show a fast
convergence: the relative accuracy for P~r is around 10�3

for � = 40 and 10�5 for � = 80. We arrive at Pij =P
~r �

i
~rP~r�

j
~r which is a direct extension of the MPS.MPS

scalar product.

Last, we need to calculate the interaction matrix el-
ements Vijkl. The function 1/|~r1 � ~r2| is given to the
TCI algorithm which produces an MPO U~r1,~r2 . Al-
though exponential, the convergence is less favourable
than for the nuclei potential and � ⇡ 80 is needed to
reach a relative accuracy of 10�3. We arrive at Vijkl =P

~r1~r2
�i

~r1
�j

~r1
U~r1~r2�

k
~r2
�l

~r2
. To evaluate these matrix ele-

ments we first form the element-wise product �i
~r�

j
~r for all

pairs ij, then compress them using TCI into an MPS �ij
~r .

Then, we’re back to the calculations of MPS.MPO.MPS
products Vijkl =

P
~r1~r2

�ij
~r1
U~r1~r2�

kl
~r2
. This completes the

suite of algorithms.

Validation of the whole algorithmic chain with Gaus-
sian orbitals. To validate the entire procedure, we make
use of Gaussian orbitals for which all these contributions
are known analytically. We use the package pyscf [20]
for this benchmark. Figure 2 shows a calculation of the
LiH molecule in the STO-6G basis set at the Hartree-
Fock level (there is no need to go beyond Hartree-Fock
since our sole purpose is to validate the proper calcula-
tion of the inputs of the many-body problem). We find
that n = 16 and � = 100 (with similar values of � for the
MPS P~r and MPO U~r1,~r2) are su�cient to reach chemical
accuracy for all matrix elements (upper panels) as well
as for the individual contribution to the energies (lower
panels) and the final total energy (lower right panel).
Interestingly though, a slightly coarser discretization of
(212)3 ⇡ 6. 1010 points is not su�cient, showing that the
arbirary resolution available with tensorized orbitals is
really needed. Many-body MPO/MPS calculations can
reach bond dimensions of several thousands, so the com-
putational cost of the present calculation with �  100 is
relatively light, of the order of one hour on a single core
computer. As these algorithms may be further optimized
and trivially parallelized, the usage of tensorized orbitals
should not impact significantly the overall computational
time of a full chemistry calculation.

Direct construction of tensorized orbitals. So far we
have used orbitals that were known explicitly and put
them into a tensorized form. This is a powerful approach
that can allow one to use existing orbitals, invent new
ones and even combine orbitals of di↵erent sorts (e.g.
Gaussians with plane waves). We end this letter with
an alternative approach where the orbital is directly con-
structed in its tensorized form without the knowledge of
its explicit form. We consider the example of the ground
state of the H+

2 ion (one electron and two protons). This
is an interesting case because, as we shall see, chemi-
cal bonds are not easy to represent with high accuracy
with Gaussian orbitals. We seek a tensorized orbital �~r

FIG. 3. Error on the ground state energy of the H
+
2 ion.

Crosses: result of a pyscf [20] calculation using di↵erent Gaus-
sian basis sets of varying number of orbitals. Circles: results
with just a single tensorized orbital using a DMRG calcula-
tion. The reference energy Eref = �0.60263421Ha. is from an
exact resolution of the molecule [24]. Inset: iso-density line
|�(~r)|2 = 0.095 for the best tensorized orbital (blue) and the
best Gaussian orbital (red, pc-4). The hexagons correspond
to the positions of the two protons which are situated 2aB

away from each other.

that minimizes the energy of the H
+
2 ion. Here, we take

advantage of the fact that the Shrödinger equation for
the wavefunction of the electron has already been put
into MPO/MPS form, i.e. we are looking for the lowest
eigenenergy of the one electron Hamiltonian, or equiva-
lently the minimum of,

E = min
�~r

X

~r1,~r2

�~r1 [�~r1,~r2 + P~r1�~r1,~r2 ]�~r2 (9)

where �~r1,~r2 is the kronecker symbol. Performing such a
minimization is exactly what the celebrated DMRG algo-
rithm does, although usually in a totally di↵erent context
(each index is a e.g. a di↵erent spin while here they la-
bel the di↵erent scales of a one-particle problem). Hence
we can rely on any existing implementation of DMRG
to get our orbital. Here we use the quimb package [25].
The results are shown in Fig.3. We find that DMRG eas-
ily reaches a very high accuracy of 10�4

mHa with just a
single tensorized orbital. In contrast the best Gaussian
basis set reaches 0.01mHa with ⇠ 100 orbitals. The in-
set shows that the electronic distribution in between the
two protons is not yet fully captured by the Gaussian ba-
sis set. Fig.3 illustrates an important di↵erence between
Gaussian basis sets and tensorized orbitals: to improve
the quality of the former, one needs to add more Gaus-
sians to the orbitals which eventually becomes expansive
computationally. In contrast, tensorized orbitals are very
expressive (they contain tens of thousands of parame-
ters) and can be optimized without a↵ecting the compu-
tational cost. We anticipate that combining tensorized

quantum chemistry
Jolly, Núñez Fernández, Waintal, arxiv:2308.03508
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FIG. 2. Green’s function G(k) of the Haldane model, com-
puted with error tolerance ✏ = 10�5 throughout. (a,b) QTCI
of the |G| and its relative error, |GQTCI � G|/|G|, for � = 512,
R = 10. (c,d) Comparison of QTT unfoldings via SVD and
TCI, showing (c) the relative error vs. the maximum bond
dimension for R = 10 and � = 16, 64, 512; and (d) runtimes vs.
R for � = 512. (e,f) QTCI bond dimensions for R = 10, 20, 30,
showing (e) D` vs. ` for � = 512; and (f) Dmax vs. �.

the relative error w.r.t. the exact value is below 10�5

throughout, hence the momentum dependence is cap-
tured accurately. There are small Fermi surfaces around
k = (� 4

3⇡, 0) and symmetry-related k. To construct
QTTs, we define f� = G(k, i⇡/�), where � encodes k
and � is fixed. Figure 2(c) shows the relative in-sample
error as a function of Dmax for TTs constructed with
R = 10 for � = 16, 64, 512, using either SVD or TCI. For
both, the error decreases exponentially as Dmax increases.
Moreover, TCI is nearly optimal, achieving the same error
as SVD for a Dmax that is only a few percent larger.

Figure 2(d) shows how SVD and TCI runtimes depend
on the number of bits, R, for a fixed Dmax at large � = 512,
where the features in G are sharp. The times, including
function evaluations, were measured on a single CPU
core of AMD EPYC 7702P. The SVD runtimes become
prohibitively large for R > 10 due to exponential scaling;
by contrast, the TCI runtimes depend only mildly on R.

Figure 2(e) shows how TCI profiles of D` vs. ` depend
on R, for � = 512 and a specified error tolerance ✏ = 10�5.
The bond dimension initially grows as D` ⇠ 2`, reaches
a maximum near ` ⇡ 20, then decreases back to 1. The
curves for R=20 and 30 almost coincide, indicating that a
good resolution of the sharp features at � = 512 requires
R > 20—well beyond the reach of SVD unfoldings.

The low computational cost of TCI allows us to in-
vestigate the � dependence of Dmax up to � = 1024.
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Figure 2(f) suggests Dmax / �
↵ with ↵ ⇡ 1/2 for large �.

Remarkably, this growth is slower than that, Dmax / �,
conjectured for a scheme based on SVD and patching [4].
A detailed analysis for general models and higher spatial
dimensions is an interesting topic for future research.

Chern number.— Finally, we consider the Chern num-
ber, C, for the Haldane model at µ = 0 and � = 1. To
avoid cumbersome gauge-fixing procedures, we use the
gauge-invariant method described in Ref. [22]. First, we
discretize the Brillouin Zone (BZ) into 2R

⇥2R plaque-
ttes. Then, the Chern number can be obtained from
a sum over plaquettes, C ⇡

1
2⇡i

P
k2BZ F (k), where

F (k) ⇡ �i arg(h k1 | k2ih k2 | k3ih k3 | k4ih k4 | k1i)
is the Berry flux through the plaquette with corners
k1 . . .k4, and | ki are valence band wave functions.

Close to the transition, for small �m = m � mc, the
band gap is 2�m. This induces peaks of width ⇠ �m in
the Berry flux F (k), shown in Figs. 3(a, b) for �m = 10�5.
There, we used a fused quantics representation with R =
20, ensuring a mesh spacing 2�R well smaller than �m.
Whereas a calculation of C via direct summation or SVD
unfolding would require 22R

⇡ 1012 function evaluations,
QTCI is much more e�cient: for a relative tolerance of
✏ = 10�10, it needed only 4⇥105 samples (and 20 s runtime
on a single core of an Apple M1 processor). It yielded a
QTT with maximum bond dimension Dmax = 50, and a
Chern number within 10�6 of the expected value C = �1

function representations
Shinaoka et al., Phys. Rev. X 13, 021015 (2023)
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FIG. 1. Left) Structure of the Eagle quantum processor which consists of a 6 ⇥ 3 heavy-hexagon lattice with two
additional qubits (113 and 13) added to the bottom left and right corners of the lattice. Right) Tensor network
structure used for our simulations of heavy-hex lattices, with the network structure directly reflecting the lattice. On-
site tensors �v are coloured in blue and possess physical, uncontracted, indices of dimension 2 (represented by their
dangling legs) and virtual indices of dimension � (represented by the edges of the network) which are shared with
neighboring tensors. Positive, diagonal bond tensors ⇤e live on the edges e between the site tensors and are coloured
in grey.

high-depth quantum circuit involving an infinite number of qubits.
Our work here demonstrates the e↵ectiveness of a belief propagation tensor network approach for solving

many-body dynamics problems. We anticipate our chosen methodology will find success and serve as a
benchmark when applied to problems with locally tree-like correlations and limited entanglement.
Model and Ansatz. Our focus here is on the dynamics of the Trotterized kicked transverse-field Ising model
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0 are neighbors on the corresponding
lattice. The lattice we are concerned with is that of the ‘heavy-hex’ lattice which corresponds to a hexagonal
lattice decorated with additional qubits along the edges (see Fig. 1). The dynamics of this model was recently
simulated on the IBM Eagle quantum processor [10], which corresponds to a lattice of 6 ⇥ 3 heavy-hexagons
plus two additional qubits.
Here, in order to simulate this system on a classical computer, we adopt a tensor network approach that

respects the qubit connectivity of the heavy-hex lattice (see Fig. 1). We fix a maximum amount of entanglement
in the system by limiting the bond dimension � of the network. We then evolve our tensor network state (TNS)
by application of the gates in U(✓h) under the belief propagation (BP) approximation; referring to the resulting
TNS as a BP-approximated TNS. Unless otherwise stated, we also extract expectation values from the TNS
using belief propagation. Explicit details of our BP-based method are provided in the Methods section. The
BP method is fully controlled on trees but incurs a potentially small but uncontrolled approximation when
there are loops in the network. Our results demonstrate that for a su�ciently large lattice, even at significant
circuit depths, the correlations in this model remain ‘tree-like’ in the sense of the BP approximation giving
very accurate results. Let us present these results.
Results. We start by considering lattices with a small number of heaxy-hexagons, where an exact state vec-

tor simulation is possible and our method can be directly benchmarked (see Fig. 2). Specifically, we compute
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Zero-noise extrapolation to mitigate hardware errors

Figure from: Kim, Youngseok, et al. "Evidence for the utility of quantum computing before fault tolerance." Nature 618.7965 (2023): 500-505
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based on pulse stretching9,17,18 or subcircuit repetition20–22 have circum-
vented the need for precise noise learning, while relying on simplistic 
assumptions about the device noise. More precise noise amplification 
can, however, enable substantial reductions in the bias of the extrapo-
lated estimator, as we demonstrate here.

The sparse Pauli–Lindblad noise model proposed in ref. 1 turns out 
to be especially well suited for noise shaping in ZNE. The model takes 
the form eL, in which L is a Lindbladian comprising Pauli jump opera-
tors Pi weighted by rates λi. It was shown in ref. 1 that restricting to jump 
operators acting on local pairs of qubits yields a sparse noise model 
that can be efficiently learned for many qubits and that accurately 
captures the noise associated with layers of two-qubit Clifford gates, 
including crosstalk, when combined with random Pauli twirls23,24. The 
noisy layer of gates is modelled as a set of ideal gates preceded by some 
noise channel Λ. Thus, applying Λα before the noisy layer produces an 
overall noise channel ΛG with gain G = α + 1. Given the exponential form 
of the Pauli–Lindblad noise model, the map Leα  is obtained by simply 
multiplying the Pauli rates λi by α. The resulting Pauli map can be sam-
pled to obtain appropriate circuit instances; for α ≥ 0, the map is a Pauli 
channel that can be sampled directly, whereas for α < 0, quasi- 
probabilistic sampling is needed with sampling overhead γ−2α for some 
model-specific γ. In PEC, we choose α = −1 to obtain an overall zero-gain 
noise level. In ZNE, we instead amplify the noise10,25–27 to different gain 
levels and estimate the zero-noise limit using extrapolation. For prac-
tical applications, we need to consider the stability of the learned noise 
model over time (Supplementary Information III.A), for instance, owing 
to qubit interactions with fluctuating microscopic defects known as 
two-level systems28.

Clifford circuits serve as useful benchmarks of estimates produced 
by error mitigation, as they can be efficiently simulated classically29. 
Notably, the entire Ising Trotter circuit becomes Clifford when θh is 
chosen to be a multiple of π/2. As a first example, we therefore set the 
transverse field to zero (RX(0) = I) and evolve the initial state |0'⊗127 
(Fig. 1a). The CNOT gates nominally leave this state unchanged, so the 
ideal weight-1 observables Zq all have expectation value 1; owing to the 
Pauli twirling of each layer, the bare CNOTs do affect the state. For each 
Trotter experiment, we first characterized the noise models Λl for the 

three Pauli-twirled CNOT layers (Fig. 1c) and then used these models 
to implement Trotter circuits with noise gain levels G ∈ {1, 1.2, 1.6}. 
Figure 2a illustrates the estimation of )Z106' after four Trotter steps  
(12 CNOT layers). For each G, we generated 2,000 circuit instances 
in which, before each layer l, we have inserted products of one- 
qubit and two-qubit Pauli errors i from L drawn with probabilities 
p = (1 − e )/2l i

G λ
,

−2( −1) l i,  and executed each instance 64 times, totalling 
384,000 executions. As more circuit instances are accumulated, the 
estimates of )Z106'G, corresponding to the different gains G, converge 
to distinct values. The different estimates are then fit by an extrapolat-
ing function in G to estimate the ideal value )Z106'0. The results in Fig. 2a 
highlight the reduced bias from exponential extrapolation19 in com-
parison with linear extrapolation. That said, exponential extrapolation 
can exhibit instabilities, for instance, when expectation values are 
unresolvably close to zero, and—in such cases—we iteratively down-
grade the extrapolation model complexity (see Supplementary Infor-
mation II.B). The procedure outlined in Fig. 2a was applied to the 
measurement results from each qubit q to estimate all N = 127 Pauli 
expectations )Zq'0. The variation in the unmitigated and mitigated 
observables in Fig. 2b is indicative of the non-uniformity in the error 
rates across the entire processor. We report the global magnetization 
along ẑ, ∑M Z N= " #/z q q , for increasing depth in Fig. 2c. Although the 
unmitigated result shows a gradual decay from 1 with an increasing 
deviation for deeper circuits, ZNE greatly improves agreement, albeit 
with a small bias, with the ideal value even out to 20 Trotter steps, or 
60 CNOT depth. Notably, the number of samples used here is much 
smaller than an estimate of the sampling overhead that would be 
needed in a naive PEC implementation (see Supplementary Informa-
tion IV.B). In principle, this disparity may be greatly reduced by more 
advanced PEC implementations using light-cone tracing30 or by 
improvements in hardware error rates. As future hardware and software 
developments bring down sampling costs, PEC may be preferred when 
affordable to avoid the potentially biased nature of ZNE.

Next, we test the efficacy of our methods for non-Clifford circuits 
and the Clifford θh = π/2 point, with non-trivial entangling dynam-
ics compared with the identity-equivalent circuits discussed in 
Fig. 2. The non-Clifford circuits are of particular importance to test, 
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Fig. 2 | Zero-noise extrapolation with probabilistic error amplification. 
Mitigated expectation values from Trotter circuits at the Clifford condition 
θh = 0. a, Convergence of unmitigated (G = 1), noise-amplified (G > 1) and noise- 
mitigated (ZNE) estimates of )Z106' after four Trotter steps. In all panels, error 
bars indicate 68% confidence intervals obtained by means of percentile 
bootstrap. Exponential extrapolation (exp, dark blue) tends to outperform 

linear extrapolation (linear, light blue) when differences between the converged 
estimates of )Z106'G≠0 are well resolved. b, Magnetization (large markers) is 
computed as the mean of the individual estimates of )Zq' for all qubits (small 
markers). c, As circuit depth is increased, unmitigated estimates of Mz decay 
monotonically from the ideal value of 1. ZNE greatly improves the estimates 
even after 20 Trotter steps (see Supplementary Information II for ZNE details).
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as the validity of exponential extrapolation is no longer guaranteed  
(see Supplementary Information V and ref. 31). We restrict the circuit 
depth to five Trotter steps (15 CNOT layers) and judiciously choose 
observables that are exactly verifiable. Figure 3 shows the results as 
θh is swept between 0 and π/2 for three such observables of increasing 
weight. Figure 3a shows Mz as before, an average of weight-1 $Z % observa-
bles, whereas Fig. 3b,c show weight-10 and weight-17 observables. 
The latter operators are stabilizers of the Clifford circuit at θh = π/2, 
obtained by evolution of the initial stabilizers Z13 and Z58, respectively, 
of |0%⊗127 for five Trotter steps, ensuring non-vanishing expectation 
values in the strongly entangling regime of particular interest. Although 
the entire 127-qubit circuit is executed experimentally, light-cone and 
depth-reduced (LCDR) circuits enable brute-force classical simula-
tion of the magnetization and weight-10 operator at this depth (see 
Supplementary Information VII). Over the full extent of the θh sweep, 
the error-mitigated observables show good agreement with the exact 
evolution (see Fig. 3a,b). However, for the weight-17 operator, the light 
cone expands to 68 qubits, a scale beyond brute-force classical simula-
tion, so we turn to tensor network methods.

Tensor networks have been widely used to approximate and com-
press quantum state vectors that arise in the study of the low-energy 
eigenstates of and time evolution by local Hamiltonians2,32,33 and, more 
recently, have been successfully used to simulate low-depth noisy 
quantum circuits34–36. Simulation accuracy can be improved by increas-
ing the bond dimension χ, which constrains the amount of entangle-
ment of the represented quantum state, at a computational cost 
scaling polynomially with χ. As entanglement (bond dimension) of a 
generic state grows linearly (exponentially) with time evolution until 
it saturates the volume law, deep quantum circuits are inherently dif-
ficult for tensor networks37. We consider both quasi-1D matrix product 
states (MPS) and 2D isometric tensor network states (isoTNS)3 that 
have O χ( )3  and O χ( )7  scaling of time-evolution complexity, respectively. 
Details of both methods and their strengths are provided in Methods 

and Supplementary Information VI. Specifically for the case of the 
weight-17 operator shown in Fig. 3c, we find that an MPS simulation of 
the LCDR circuit at χ = 2,048 is sufficient to obtain the exact evolution 
(see Supplementary Information VIII). The larger causal cone of the 
weight-17 observable results in an experimental signal that is weaker 
compared with that of the weight-10 observable; nevertheless, mitiga-
tion still yields good agreement with the exact trace. This comparison 
suggests that the domain of experimental accuracy could extend 
beyond the scale of exact classical simulation.

We expect that these experiments will eventually extend to circuit 
volumes and observables in which such light-cone and depth reduc-
tions are no longer important. Therefore, we also study the perfor-
mance of MPS and isoTNS for the full 127-qubit circuit executed in Fig. 3, 
at respective bond dimensions of χ = 1,024 and χ = 12, which are primar-
ily limited by memory requirements. Figure 3 shows that the tensor 
network methods struggle with increasing θh, losing both accuracy and 
continuity near the verifiable Clifford point θh = π/2. This breakdown 
can be understood in terms of entanglement properties of the state. 
The stabilizer state produced by the circuit at θh = π/2 has an exactly flat 
bipartite entanglement spectrum, found from a Schmidt decomposi-
tion of a 1D ordering of the qubits. Thus, truncating states with small 
Schmidt weight—the basis of all tensor network algorithms—is not 
justified. However, as exact tensor network representations generi-
cally require bond dimension exponential in circuit depth, truncation 
is necessary for tractable numerical simulations.

Finally, in Fig. 4, we stretch our experiments to regimes in which the 
exact solution is not available with the classical methods considered 
here. The first example (Fig. 4a) is similar to Fig. 3c but with a further 
final layer of single-qubit Pauli rotations that interrupt the circuit-depth 
reduction that previously enabled exact verification for any θh (see Sup-
plementary Information VII). At the verifiable Clifford point θh = π/2, 
the mitigated results agree again with the ideal value, whereas the 
χ = 3,072 MPS simulation of the 68-qubit LCDR circuit markedly fails 
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Fig. 3 | Classically verifiable expectation values from 127-qubit, depth-15 
Clifford and non-Clifford circuits. Expectation value estimates for θh sweeps 
at a fixed depth of five Trotter steps for the circuit in Fig. 1a. The considered 
circuits are non-Clifford except at θh = 0, π/2. Light-cone and depth reductions 
of respective circuits enable exact classical simulation of the observables for all 
θh. For all three plotted quantities (panel titles), mitigated experimental results 
(blue) closely track the exact behaviour (grey). In all panels, error bars indicate 
68% confidence intervals obtained by means of percentile bootstrap. The 
weight-10 and weight-17 observables in b and c are stabilizers of the circuit at 
θh = π/2 with respective eigenvalues +1 and −1; all values in c have been negated 
for visual simplicity. The lower inset in a depicts variation of $Zq% at θh = 0.2 
across the device before and after mitigation and compares with exact results. 

Upper insets in all panels illustrate causal light cones, indicating in blue the 
final qubits measured (top) and the nominal set of initial qubits that can 
influence the state of the final qubits (bottom). Mz also depends on 126 other 
cones besides the example shown. Although in all panels exact results are 
obtained from simulations of only causal qubits, we include tensor network 
simulations of all 127 qubits (MPS, isoTNS) to help gauge the domain of  
validity for those techniques, as discussed in the main text. isoTNS results  
for the weight-17 operator in c are not accessible with current methods (see 
Supplementary Information VI). All experiments were carried out for G = 1, 1.2,  
1.6 and extrapolated as in Supplementary Information II.B. For each G, we 
generated 1,800–2,000 random circuit instances for a and b and 2,500–3,000 
instances for c.
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Figure from: Kim, Youngseok, et al. "Evidence for the utility of quantum computing before fault tolerance." Nature 618.7965 (2023): 500-505

These tensor methods cannot keep up

Experiment

504 | Nature | Vol 618 | 15 June 2023

Article

in the strongly entangling regime of interest. Although χ = 2,048 was 
sufficient for exact simulation of the weight-17 operator in Fig. 3c, an 
MPS bond dimension of 32,768 would be needed for exact simulation 
of this modified circuit and operator with θh = π/2.

As a final example, we extend the circuit depth to 20 Trotter steps 
(60 CNOT layers) and estimate the θh dependence of a weight-1 observ-
able, $Z62%, in Fig. 4b, in which the causal cone extends over the entire 
device. Given the non-uniformity of device performance, also seen in 
the spread of single-site observables in Fig. 2b, we choose an observ-
able that obtains the expected result $Z62% ≈ 1 at the verifiable θh = 0 
point. Despite the greater depth, the MPS simulations of the LCDR 
circuit agree well with the experiment in the weakly entangling regime 
of small θh. Although deviations from the experimental trace emerge 
with increasing θh, we note that the MPS simulations slowly move in 
the direction of the experimental data with increasing χ (see Supple-
mentary Information X) and that the bond dimension needed to exactly 
represent the stabilizer state and its evolution to depth 20 at θh = π/2 
is 7.2 × 1016, 13 orders of magnitude larger than what we considered (see 
Supplementary Information VIII). For reference, as the memory 
required to store an MPS scales as χ( )2O , already a bond dimension of 
χ = 1 × 108 would require 400 PB, independent of any runtime consid-
erations. Furthermore, full-state tensor network simulations are already 
unable to capture the dynamics at the exactly verifiable five-step circuit 
in Fig. 3a. We also note that, given the large unmitigated signal, there 
may be opportunity to study time evolution at even larger depths on 
the current device.

For execution times, the tensor network simulations in Fig. 4 were run 
on a 64-core, 2.45-GHz processor with 128 GB of memory, in which the 
run time to access an individual data point at fixed θh was 8 h for Fig. 4a 
and 30 h for Fig. 4b. The corresponding quantum wall-clock run time 
was approximately 4 h for Fig. 4a and 9.5 h for Fig. 4b, but this is also 
far from a fundamental limit, being at present dominated by classical 
processing delays that stand to be largely eliminated through concep-
tually straightforward optimizations. Indeed, the estimated device 
run time for the error-mitigated expectation values using 614,400 
samples (2,400 circuit instances for each gain factor and readout error 

mitigation, with 64 shots per instance) at a conservative sampling 
rate of 2 kHz is only 5 min 7 s, which can be even further reduced by 
optimization of qubit reset speeds. On the other hand, the classical 
simulations may also be improved by methods besides the pure-state 
tensor networks considered here, such as Heisenberg operator evolu-
tion methods, which have recently been applied to non-Clifford simu-
lations38. Another approach is to numerically emulate the ZNE used 
experimentally. For example, it was recently argued that the finite-χ 
truncation error introduced by tensor-product compression mim-
ics experimental gate errors34. It would thus be natural to develop a 
theory for extrapolating tensor network state expectation values in 
the bond dimension χ for time evolution, as has been done in the case 
of ground-state search39. Alternatively, one can more directly emulate 
ZNE by introducing artificial dissipation into the dynamics engineered 
so that the resulting mixed-state evolution has reduced tensor-product 
bond dimension, as—for example—in dissipation-assisted operator 
evolution40, and extrapolate results with respect to the strength of the 
dissipation. Although such methods40,41 can successfully capture the 
long-time dynamics of the low-weight observables of a 1D spin chain, 
their applicability to high-weight observables in 2D at intermediate 
times is not clear—particularly as these methods are explicitly con-
structed to truncate complex operators.

The observation that a noisy quantum processor, even before 
the advent of fault-tolerant quantum computing, produces reliable 
expectation values at a scale beyond 100 qubits and non-trivial circuit 
depth leads to the conclusion that there is indeed merit to pursuing 
research towards deriving a practical computational advantage from 
noise-limited quantum circuits. Over recent years, substantial research 
effort has been directed to develop and demonstrate candidate heuris-
tic quantum algorithms5 that use noise-limited quantum circuits to esti-
mate expectation values. We have now reached reliability at a scale for 
which one will be able to verify proposals and explore new approaches 
to determine which can provide utility beyond classical approxima-
tion methods. At the same time, these results will motivate and help 
advance classical approximation methods as both approaches serve 
as valuable benchmarks of one another. However, even with improved 
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Fig. 4 | Estimating expectation values beyond exact verification. Plot 
markers, confidence intervals and causal light cones appear as defined in Fig. 3. 
a, Estimates of a weight-17 observable (panel title) after five Trotter steps for 
several values of θh. The circuit is similar to that in Fig. 3c but with further 
single-qubit rotations at the end. This effectively simulates the time evolution 
of the spins after Trotter step six by using the same number of two-qubit gates 
used for Trotter step five. As in Fig. 3c, the observable is a stabilizer at θh = π/2 
with eigenvalue −1, so we negate the y axis for visual simplicity. Optimization of 
the MPS simulation by including only qubits and gates in the causal light cone 

enables a higher bond dimension (χ = 3,072), but the simulation still fails to 
approach −1 (+1 in negated y axis) at θh = π/2. b, Estimates of the single-site 
magnetization 〈Z62〉 after 20 Trotter steps for several values of θh. The MPS 
simulation is light-cone-optimized and performed with bond dimension 
χ = 1,024, whereas the isoTNS simulation (χ = 12) includes the gates outside  
the light cone. The experiments were carried out with G = 1, 1.3, 1.6 for a and 
G = 1, 1.2, 1.6 for b, and extrapolated as in Supplementary Information II.B.  
For each G, we generated 2,000–3,200 random circuit instances for a and 
1,700–2,400 instances for b.
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FIG. 1. Left) Structure of the Eagle quantum processor which consists of a 6 ⇥ 3 heavy-hexagon lattice with two
additional qubits (113 and 13) added to the bottom left and right corners of the lattice. Right) Tensor network
structure used for our simulations of heavy-hex lattices, with the network structure directly reflecting the lattice. On-
site tensors �v are coloured in blue and possess physical, uncontracted, indices of dimension 2 (represented by their
dangling legs) and virtual indices of dimension � (represented by the edges of the network) which are shared with
neighboring tensors. Positive, diagonal bond tensors ⇤e live on the edges e between the site tensors and are coloured
in grey.

high-depth quantum circuit involving an infinite number of qubits.
Our work here demonstrates the e↵ectiveness of a belief propagation tensor network approach for solving

many-body dynamics problems. We anticipate our chosen methodology will find success and serve as a
benchmark when applied to problems with locally tree-like correlations and limited entanglement.
Model and Ansatz. Our focus here is on the dynamics of the Trotterized kicked transverse-field Ising model

given by the unitary

U(✓h) =

0

@
Y

hv,v0i

exp
⇣
i
⇡

4
ZvZv0

⌘
1

A
 
Y

v

exp

✓
�i

✓h

2
Xv

◆!
, (1)

where Z and X denote Pauli operators and hv, v
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i indicates that v and v

0 are neighbors on the corresponding
lattice. The lattice we are concerned with is that of the ‘heavy-hex’ lattice which corresponds to a hexagonal
lattice decorated with additional qubits along the edges (see Fig. 1). The dynamics of this model was recently
simulated on the IBM Eagle quantum processor [10], which corresponds to a lattice of 6 ⇥ 3 heavy-hexagons
plus two additional qubits.
Here, in order to simulate this system on a classical computer, we adopt a tensor network approach that

respects the qubit connectivity of the heavy-hex lattice (see Fig. 1). We fix a maximum amount of entanglement
in the system by limiting the bond dimension � of the network. We then evolve our tensor network state (TNS)
by application of the gates in U(✓h) under the belief propagation (BP) approximation; referring to the resulting
TNS as a BP-approximated TNS. Unless otherwise stated, we also extract expectation values from the TNS
using belief propagation. Explicit details of our BP-based method are provided in the Methods section. The
BP method is fully controlled on trees but incurs a potentially small but uncontrolled approximation when
there are loops in the network. Our results demonstrate that for a su�ciently large lattice, even at significant
circuit depths, the correlations in this model remain ‘tree-like’ in the sense of the BP approximation giving
very accurate results. Let us present these results.
Results. We start by considering lattices with a small number of heaxy-hexagons, where an exact state vec-

tor simulation is possible and our method can be directly benchmarked (see Fig. 2). Specifically, we compute

However, we were able to simulate the same 
2D lattice to high accuracy – how?
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FIG. 1. Left) Structure of the Eagle quantum processor which consists of a 6 ⇥ 3 heavy-hexagon lattice with two
additional qubits (113 and 13) added to the bottom left and right corners of the lattice. Right) Tensor network
structure used for our simulations of heavy-hex lattices, with the network structure directly reflecting the lattice. On-
site tensors �v are coloured in blue and possess physical, uncontracted, indices of dimension 2 (represented by their
dangling legs) and virtual indices of dimension � (represented by the edges of the network) which are shared with
neighboring tensors. Positive, diagonal bond tensors ⇤e live on the edges e between the site tensors and are coloured
in grey.

high-depth quantum circuit involving an infinite number of qubits.
Our work here demonstrates the e↵ectiveness of a belief propagation tensor network approach for solving

many-body dynamics problems. We anticipate our chosen methodology will find success and serve as a
benchmark when applied to problems with locally tree-like correlations and limited entanglement.
Model and Ansatz. Our focus here is on the dynamics of the Trotterized kicked transverse-field Ising model
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where Z and X denote Pauli operators and hv, v
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0 are neighbors on the corresponding
lattice. The lattice we are concerned with is that of the ‘heavy-hex’ lattice which corresponds to a hexagonal
lattice decorated with additional qubits along the edges (see Fig. 1). The dynamics of this model was recently
simulated on the IBM Eagle quantum processor [10], which corresponds to a lattice of 6 ⇥ 3 heavy-hexagons
plus two additional qubits.
Here, in order to simulate this system on a classical computer, we adopt a tensor network approach that

respects the qubit connectivity of the heavy-hex lattice (see Fig. 1). We fix a maximum amount of entanglement
in the system by limiting the bond dimension � of the network. We then evolve our tensor network state (TNS)
by application of the gates in U(✓h) under the belief propagation (BP) approximation; referring to the resulting
TNS as a BP-approximated TNS. Unless otherwise stated, we also extract expectation values from the TNS
using belief propagation. Explicit details of our BP-based method are provided in the Methods section. The
BP method is fully controlled on trees but incurs a potentially small but uncontrolled approximation when
there are loops in the network. Our results demonstrate that for a su�ciently large lattice, even at significant
circuit depths, the correlations in this model remain ‘tree-like’ in the sense of the BP approximation giving
very accurate results. Let us present these results.
Results. We start by considering lattices with a small number of heaxy-hexagons, where an exact state vec-

tor simulation is possible and our method can be directly benchmarked (see Fig. 2). Specifically, we compute
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After messages converged, apply gates to evolve 

one step in time

Belief Propagation

U(t) =



Belief propagation method aspects:


• if lattice has no loops, fully controlled


• can run on any lattice


• cheap: use huge internal bond 
dimensions 


• similar to mean-field theory, but likely 
much more accurate


• can do dynamics on top

χ

Sahu, Swingle, arxiv:2206.04701

Guo, Poletti, Arad, arxiv:2301.05844


Tindall, Fishman, arxiv:2306.17837

Belief Propagation



How well does it work?

Test on verifiable, small systems

Larger lattices help!
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FIG. 2. Dynamics of the kicked Ising model on heavy-hex lattices of varying size. a-c) Results from the BP-evolved
TNS for several bond dimensions are compared to exact state vector solutions at ✓h = ⇡/4. The results labelled
with �⇤ are obtained by computing expectations values of the BP-evolved TNS using exact contraction, while the
results labelled with � are obtained by computing expectations values of the BP-evolved TNS using BP contraction.
In both cases, the states are evolved by applying gates using the BP approximation. Top plots show dynamics of the
magnetization on the indicated (red ring) site, bottom plots show the BP error estimate (based on the spectrum of the
edge environment — see Eqs. (12) and (13) in the BP error estimate section for a definition) for the � = 32 TNS along
the indicated edge e versus the Trotter step. The dotted faded red line shows the relative error between the � = 32
TNS magnetization approximated by BP and the exact magnetization while the faded green line shows the relative
error between the � = 32 TNS magnetization approximated by BP and the magnetization obtained by contracting the
same TNS exactly. Insets in the bottom plots show the first 50 singular values of the edge environment after 15 Trotter
steps. d) BP error estimate (see Eqs. (12) and (13)) approximated using a boundary MPS contraction scheme (see the
Appendix on Boundary MPS for details) of the TNS for n⇥m lattices of n rows and m columns of heavy hexes. Top)
TNS with � = 12 and a boundary MPS contraction scheme with maximum MPS bond dimension D = 12 at ✓h = ⇡/4.
Bottom) TNS with � = 8 and a boundary MPS contraction scheme with maximum MPS bond dimension D = 8 at
✓h = 3⇡/8.

the dynamics of the on-site magnetization for ✓h = ⇡/2 and lattices consisting of 1, 2, and 3 heavy-hexagons
respectively. We also compute the separability of the ‘edge environment’ of the BP-approximated TNS along a
chosen edge (see the BP error estimate section for a definition). This environment corresponds to the contrac-
tion of the TNS down to the given edge and when it is completely separable the belief propagation assumption
is exact. The separability thus gives us an estimate of the error stemming from the BP approximation.

For short circuit depths n < 6 our method gives perfect agreement with the exact simulation and the edge
environments are all completely separable because the light cone of circuit does not reach around the loops. For
larger circuit depths there is deviation between the exact dynamics and the BP-approximated TNS dynamics.
This can be explicitly characterized by a decrease in the separability of the edge environments, since the BP
method approximates the environments used to perform the gate evolution as outer products of environments
coming from incoming edges of a region of the system. Our small lattice simulations demonstrate something
quite remarkable: as the number of heavy-hexagons increases, the BP approximation at fixed � improves
significantly and the edge environment becomes highly separable even out to 20 Trotter steps. Moreover, in
Fig. 2d) we use boundary MPS (see the Appendix on Boundary MPS for a description of the method) to
show that this increased separability persists with increasing system sizes. This result can be used to explain
the accuracy of the results we present for for large system sizes below.

We now consider the 127 qubit heavy-hexagon lattice which corresponds to that of the IBM Eagle processor
and we compare our method to the experimental quantum simulation results first from Fig. 3 of Ref. [10].
In Fig. 3 we overlay these results with that of our BP-approximated TNS dynamics shown as cross symbols.
Here expectation values are measured after 5 Trotter steps and exact results, based on brute force light
cone simulation techniques, are available to allow us to directly assess the errors. The tensor network state
(TNS) and gate evolution methods we use simulate the full 127-qubit system and result in highly accurate
expectation values. In Fig. 3(a) we compute the expected value of the average single-site magnetization and



How well does it work?

Nearly exact for verifiable regime (5 time steps) 4

FIG. 3. Comparison for classically verifiable systems of our BP-approximated tensor network state approach to simulat-
ing the dynamics of the kicked transverse-field Ising model on a heavy-hex lattice versus the Eagle quantum processor
and alternative tensor network methods. Expectation values with respect to the state | (✓h, 5)i (i.e following 5 Trotter
steps of the dynamics of the model — see Eqs. (1) and (3)) are plotted, alongside exact results determined from light
cone simulations. a) Average magnetization. b) Weight-10 observable. c) Weight-17 observable. The bottom plots
show errors defined as the absolute di↵erence between the simulation result and the exact result. For some data points
the error from our TNS simulation is too small to fit on the scale of the plot and so these points are not marked.
Circled, annotated points denote, for a given ✓h, the memory required to store the state of the system at the given
bond dimension � and the walltime associated with performing the simulation and calculating the relevant observable
on a Macbook M1 Pro.

show that we can obtain an accuracy of ⇠ 10�14 with a simulation that runs in less than 10 seconds on a laptop
computer. Importantly, even for Figs. 3(b) and Figs. 3(c) — where higher weight observables are measured and
information about the loops in the lattice could manifest — we are still able to calculate them to a remarkable
accuracy using our BP-approximated TNS. Specifically, we obtain values of these higher weight observables
to orders of magnitude better accuracy than the quantum processor with a simulation that takes less than
4 minutes to run on a Macbook Pro and a state that takes up, at most, 0.3GB of memory. The remarkable
accuracy we are able to achieve corroborates with our earlier analysis of the error of the BP approximation as
a function of system size (see Fig. 2), where we found that the BP error decreases as we increase the system
size for this model and lattice.

Turning next to larger numbers of Trotter evolution steps, where exact results are not available, we show
results in Fig. 4 for properties also computed by the quantum processor. We push to su�ciently large bond
dimensions to perform an extrapolation of the results from BP-approximated TNS to infinite bond dimension,
demonstrating the reliability of a linear extrapolation in 1/� for select ✓h in Fig. 4c. For both the n = 6
(Fig. 4a) and n = 20 (Fig. 4b) Trotter step simulations we capture the known exact values at the Cli↵ord
points ✓h = 0 and ✓h = ⇡/2 — with the weight-17 stabilizer demonstrating the anticipated saturation to unity.
Notably, for the n = 20 Trotter step circuit and ⇡

8  ✓h 
3⇡
8 there have been some discrepancies between

various classical methods and the quantum processor (see Fig. 7 in the Appendix for a full comparison and
discussion of di↵erent methods) [11–14].

Beyond the results we presented above giving evidence for the separable nature of the edge environments
in this system, we present further evidence showing the BP-approximated TNS method is highly accurate
throughout the whole phase diagram in Fig. 4c-d). Specifically, we compute the dynamics of hZ62i for several
✓h and compare the BP-approximated TNS to a MPS method which i) utilizes light cone depth reduction
to calculate hZ62i at every Trotter step, ii) uses a higher bond dimension than that in Ref. [10], and iii)
implements an improved site ordering to lower the entanglement and gate error. We find that the di↵erence
between the BP-approximated TNS and MPS is directly correlated with the error from the MPS method and
that both methods agree closely when the error in the MPS method is itself small. When the MPS error is

BP-TNS (this work)

Only minutes running on M1 Macbook Pro
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Remains highly accurate for larger depths
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FIG. 4. Comparison for non-classically-verifiable systems of our BP-approximated tensor network state approach to
simulating the dynamics of the kicked transverse-field Ising model on the heavy-hex lattice versus the Eagle quantum
processor and alternative tensor network methods. Expectation values calculated following a number of Trotter steps
of the dynamics of the model — see Eq. (1) — are plotted. a) Weight-17 stabilizer after 6 steps of evolution. b)
Weight-1 observable after 20 steps. The shaded region shows the di↵erence between our finite bond dimension data
and the data extrapolated to infinite bond dimension, where we believe the true answer lies. c) Top and bottom plots
show observables in b) at ✓h = 0.7 and ✓h = 1.0 respectively as a function of inverse bond dimension of the TNS. Red
dashed lines represent a least squares fit of the form A + B/� taken on the data, and we take A to be the predicted
value of the observable in the limit � ! 1. Even in the limit � ! 1 there will generally be some deviation from the
exact result due to the BP approximation that we use for evolving the state and computing expectation values (see
the Methods section). Our analysis of the errors due to BP for this system, however, suggest this deviation is likely to
be very small. d-f) Dynamics of hZ62i using the BP-approximated TNS approach versus a MPS approach with light
cone depth reduction (pink) for ✓h = 0.6, 0.8 and 1.0 respectively. Results from other methods at depth 20 are shown
as black circles (Eagle processor [10]), green crosses (truncated Pauli strings [12]), blue hexagons (MPO [11]) and red
stars (PEPO [13]). MPS bond dimensions are 2500, 1250, and 1250 for d), e), and f) respectively. Inset shows average
gate error from the MPS approach (pink circles) and absolute di↵erence between the BP-approximated TNS and the
MPS result (solid grey line).

small, one can consider MPS to be exact as it makes no assumption about the tree-like correlations and the
separability of the edge environments. The fact the BP-based method agrees with the MPS method when it
exhibits very small errors suggest the BP error is also minimal. This is clearest for ✓h = 0.6 where we are
able to push our MPS simulations to a bond dimension where the average gate errors stays below 10�4 and
there is clear agreement between BP-approximated TNS and MPS and disagreement among the other methods
[11–13, 15]. This agreement is only possible if the state possesses tree-like correlations and thus reinforces our
earlier results on the general accuracy of the BP approximation for the dynamics of this system on this lattice.

Dynamics of the infinite heavy-hex lattice - One of the powerful features of tensor network methods is
that they allow us to simulate the dynamics of infinite lattice structures provided they possess some form of
translational invariance [16–18]. Here we present results on the dynamics of the kicked transverse-field Ising
model on an infinite heavy-hexagon lattice, corresponding to a quantum computer with an infinite number
of qubits. Again, we approximate the dynamics and take expectation values using the BP approximation.
Given evidence that we have presented on the accuracy of the BP approximation for this lattice and model,
especially for larger system sizes, we expect that these results are highly accurate.

For the infinite heavy-hex lattice there is a 5-site unit cell which can be used to construct the lattice (see Fig.
5). We take this single unit cell and add in appropriate periodic boundary conditions. It can be shown that

Larger  requires ~day on cluster nodeχ

Use trick involving extra evolution to get 3-Pauli operators
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Many other simulations have come out!

Begušić, Chan, arxiv:2306.16372

Kechedzhi et al., arxiv:2306.15970

Anand et al. arxiv:2306.17839

Begušić, Gray, Chan, arxiv:2308.05077

Liao et al., arxiv:2308.03082

All agree with our results, some very closely

Based on more detailed per-time-step analysis &

MPS comparison, we believe ours are highly accurate

Clifford perturbation theory

tensor networks
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finite-size & lightcone extrapolations
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Summary: Ising on Heavy-Hex

Apparently Ising on 2D heavy-hex lattice has 
"tree-like" correlations (as if loops played no role)

Belief propagation tensor network method 
very effective for dynamics in this case

Can study large 2D quantum systems

evolving in time
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FIG. 1. Left) Structure of the Eagle quantum processor which consists of a 6 ⇥ 3 heavy-hexagon lattice with two
additional qubits (113 and 13) added to the bottom left and right corners of the lattice. Right) Tensor network
structure used for our simulations of heavy-hex lattices, with the network structure directly reflecting the lattice. On-
site tensors �v are coloured in blue and possess physical, uncontracted, indices of dimension 2 (represented by their
dangling legs) and virtual indices of dimension � (represented by the edges of the network) which are shared with
neighboring tensors. Positive, diagonal bond tensors ⇤e live on the edges e between the site tensors and are coloured
in grey.

high-depth quantum circuit involving an infinite number of qubits.
Our work here demonstrates the e↵ectiveness of a belief propagation tensor network approach for solving

many-body dynamics problems. We anticipate our chosen methodology will find success and serve as a
benchmark when applied to problems with locally tree-like correlations and limited entanglement.
Model and Ansatz. Our focus here is on the dynamics of the Trotterized kicked transverse-field Ising model
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where Z and X denote Pauli operators and hv, v
0
i indicates that v and v

0 are neighbors on the corresponding
lattice. The lattice we are concerned with is that of the ‘heavy-hex’ lattice which corresponds to a hexagonal
lattice decorated with additional qubits along the edges (see Fig. 1). The dynamics of this model was recently
simulated on the IBM Eagle quantum processor [10], which corresponds to a lattice of 6 ⇥ 3 heavy-hexagons
plus two additional qubits.
Here, in order to simulate this system on a classical computer, we adopt a tensor network approach that

respects the qubit connectivity of the heavy-hex lattice (see Fig. 1). We fix a maximum amount of entanglement
in the system by limiting the bond dimension � of the network. We then evolve our tensor network state (TNS)
by application of the gates in U(✓h) under the belief propagation (BP) approximation; referring to the resulting
TNS as a BP-approximated TNS. Unless otherwise stated, we also extract expectation values from the TNS
using belief propagation. Explicit details of our BP-based method are provided in the Methods section. The
BP method is fully controlled on trees but incurs a potentially small but uncontrolled approximation when
there are loops in the network. Our results demonstrate that for a su�ciently large lattice, even at significant
circuit depths, the correlations in this model remain ‘tree-like’ in the sense of the BP approximation giving
very accurate results. Let us present these results.
Results. We start by considering lattices with a small number of heaxy-hexagons, where an exact state vec-

tor simulation is possible and our method can be directly benchmarked (see Fig. 2). Specifically, we compute



Thoughts & Future Directions

Tensor networks defining boundary between 
hard vs. easy quantum problems

Helping to quantum computing to focus on 

problems with greatest opportunity

On classical side, how many quantum algorithms can be 

brought into classical world, becoming

"quantum-inspired classical"

Can get benefits of certain quantum algorithms today,

on existing computers


