Quantum Computing on Classical Machines with Tensor Networks

E.M. Stoudenmire Jan 2024 - Brookhaven Natl. Lab

Motivation

Great excitement for prospects of near-term quantum computing

Often making headlines:

> Quantum computers could crack the cryptography that underpins financial stability

Disease control - Even though the novel coronavirus pandemic has not been curbed, quantum computing can help scientists and researchers discover vaccines in the future and address health

Cloud computing - Google plans to offer commercial cloud computing on its quantum computer process complicated problems and provide results to individual users.

Cryptography - Quantum cryptography can potentially change data security, creating tamper-pr cybersecurity measures.
in healthcare. Quantum computers have the potential to resolve problems of
this complexity and magnitude across many different industries and applications, including finance, transportation, chemicals, and cybersecurity.

Motivation

Quantum hardware reaching impressive milestones

Motivation

Yet not clear what problems quantum computers can practically solve better than classical computers

Some candidates:
factoring (Shor's algorithm) or inverse problems (Grover's)
how robust to decoherence?
1000's of qubits needed? time to solution?
chemistry \& physics simulation
can it scale? how accurate? sampling overhead?

Motivation

Amazing devices are being built... we should research what they are best for

Simulating quantum computers clarifies line between easy and hard

Tensor networks are the most powerful simulators
Sometimes tensor networks are so powerful, we can flip the script: quantum algorithms become new "quantum inspired" classical algorithms

Today's Talk

- Motivation: Quantum Computing
- Classical Methods and Tensor Networks for Quantum Systems
- Entanglement of Quantum Algorithms: the Quantum Fourier Transform (QFT)
- Assessing Quantum Utility Claims

Classical Methods for Quantum Systems

How 'quantum' are
classical computers?

Classical Methods for Quantum Systems

How hard is quantum mechanics?
Consider n quantum spins or qubits

quantum wavefunction Ψ
2^{n} parameters inside
exponentially hard to store \& manipulate

Classical Methods for Quantum Systems

What's going on at Flatiron Institute
Center for Computational Quantum Physics (CCQ)?

Classical Methods for Quantum Systems

Developing ways to break through the 2^{n}
exponential quantum wall
quantum Monte Carlo

high-order perturbation theory

embedding (DMFT)
GW method
tensor networks
neural quantum states
density functional theory
numerical renormalization group

Classical Methods for Quantum Systems

Developing ways to break through the 2^{n} exponential quantum wall

Quantum Monte Carlo

breaks exponential by sampling important configurations

Classical Methods for Quantum Systems

Developing ways to break through the 2^{n}
exponential quantum wall

Embedding / DMFT

treats small piece of system inside solvable "bath" with mirrored properties

Classical Methods for Quantum Systems

Last but not least: tensor networks

Tensor networks:

- work directly with wavefunction
- use compression to store wavefunction
- closely mimic a quantum computer

Let's unpack these...

Classical Methods for Quantum Systems

General wavefunction of n qubits

$$
\begin{aligned}
& \quad|\Psi\rangle=\sum_{s_{1} s_{2} s_{3} \cdots s_{n}} \Psi^{s_{1} s_{2} s_{3} \cdots s_{n}}\left|s_{1} s_{2} s_{3} \cdots s_{n}\right\rangle \quad s_{j} \in 0,1 \\
& \text { Amplitudes form a big tensor! }
\end{aligned}
$$

Classical Methods for Quantum Systems

What is a tensor?

$$
\left.\begin{array}{lll}
\text { vector } & v=\left[\begin{array}{l}
2 \\
3
\end{array}\right] & v_{2}=3 \\
\text { matrix } & M=\left[\begin{array}{ll}
5 & 7 \\
8 & 9
\end{array}\right] & M_{12}=7 \\
\text { order-3 } & T=\left[\begin{array}{ll}
3 & 5 \\
1 & 4 \\
\text { tensor } & 2
\end{array}\right] \\
5
\end{array}\right] \quad T_{112}=5
$$

Classical Methods for Quantum Systems

N -index tensor = shape with N lines

Low-order examples:

Joining wires means contraction:

$$
\sum_{j} M_{i j} v_{j}=w_{i}
$$

Classical Methods for Quantum Systems

N -index tensor exponential to store

Tensor version of "many-body problem"

Classical Methods for Quantum Systems

Just as factorizing a matrix reduces cost (memory and compute)

χ is matrix rank

Classical Methods for Quantum Systems

Can recursively factor (compress) a tensor as well

Classical Methods for Quantum Systems

Can recursively factor (compress) a tensor as well

Classical Methods for Quantum Systems

Can recursively factor (compress) a tensor as well

Classical Methods for Quantum Systems

Can recursively factor (compress) a tensor as well

Classical Methods for Quantum Systems

Can recursively factor (compress) a tensor as well

Classical Methods for Quantum Systems

Can recursively factor (compress) a tensor as well

Classical Methods for Quantum Systems

Can recursively factor (compress) a tensor as well

Advantage if internal indices small, yet accuracy is good (small "bond dimension" or "rank" χ)

Classical Methods for Quantum Systems

Optimize by e.g. applying quantum gates
(imaginary or real time evolution)

Efficient - only touch three small tensors per gate

\approx

Classical Methods for Quantum Systems

How do tensor networks mimic quantum computers?

$$
|\Psi\rangle=\delta \delta \delta \delta \delta \partial \delta
$$

Classical Methods for Quantum Systems

How do tensor networks mimic quantum computers?

Classical Methods for Quantum Systems

How do tensor networks mimic quantum computers?

Classical Methods for Quantum Systems

How do tensor networks mimic quantum computers?

	Quantum Computer	Tensor Network
prepare simple initial states		
efficiently apply gates		

Classical Methods for Quantum Systems

How do tensor networks mimic quantum computers?

$$
|\Psi\rangle=\text { - - - - - - - - }
$$

Classical Methods for Quantum Systems

How do tensor networks mimic quantum computers?

$$
|\Psi\rangle=6-1
$$

Classical Methods for Quantum Systems

Thought experiment:
If we put a quantum computer and a tensor network in a box, for what problems could we tell them apart?

Application \#1:
 The Quantum Fourier Transform

How 'quantum' are quantum algorithms?

Analogy between quantum and classical so precise, some quantum algorithms have been classical all along

Quantum Fourier transform (OFT):

Equal to network of small tensors ("MPO" tensor network)

What does the QFT do?

Consider function discretized on grid of spacing $\frac{1}{2^{n}}$
Encode as tensor network state of n qubits

"amplitude encoding"

Quantum Fourier Transform

Performs a discrete Fourier transform on a quantum state (viewed as a large vector)

Quantum Fourier Transform

Circuit for QFT can be interpreted as a tensor network

$\square=$ Hadamard gates
$\oint=$ controlled phase gates

Treat each column as an MPO and multiply together

Quantum Fourier Transform

Treat each column as an MPO tensor network and multiply these together:

Quantum Fourier Transform

Treat each column as an MPO and multiply together

Quantum Fourier Transform

Treat each column as an MPO and multiply together

Quantum Fourier Transform

Treat each column as an MPO and multiply together

Quantum Fourier Transform

Treat each column as an MPO and multiply together

Quantum Fourier Transform

Treat each column as an MPO and multiply together

Quantum Fourier Transform

Treat each column as an MPO and multiply together

Result is MPO of internal dimension $\chi=8$! (When working to double precision)*

Jielun Chen

Classical Methods for Quantum Systems

Compressed quantum Fourier transform

 beats "fast Fourier transform" (FFT)

Classical Methods for Quantum Systems

Rapidly developing topic of "quantum-inspired classical algorithms"

fluid simulations
Gourianov et al., Nature Comp. Sci., 2, 30-37 (2022)

quantum chemistry
Joly, Núñez Fernández, Waintal, arxiv:2308.03508
function representations
Shinaoka et al., Phys. Rev. X 13, 021015 (2023)

Application \#2:
 Physics Simulation
 (Ising Dynamics on Heavy-Hex Lattice)

Have quantum computers
demonstrated utility?

This work - collaboration with:

J. Tindall, M. Fishman, EMS, D. Sels, PRX Quantum, arxiv:2306.14887 J. Tindall, M. Fishman, SciPost Phys. 15, 222 (2023)

Motivation

Last June, sudden coverage of a new quantum experiment:

Article | Open Access | Published: 14 June 2023

Evidence for the utility of quantum computing before fault tolerance

```
Youngseok Kim}\bigoplus, Andrew Eddins అ, Sajant Anand, Ken Xuan Wei, Ewout van den Berg, Sami
Rosenblatt, Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan Temme & Abhinav Kandala 
Nature 618,500-505 (2023)| Cite this article
77k Accesses | 1 Citations | 609 Altmetric | Metrics
```


NewScientist

News Feat culture Crosswords | This week's magazine Health Space Prysics Technology Environment Mind Humans Life Mathematics Chemistry Earth Society

Technology

IBM quantum computer beat a supercomputer in a head-to-head test
Researchers at IBM pitted their 127-qubit Eagle quantum computer against a conventional supercomputer in a challenge to perform a complex calculation - and the quantum computer won
By Karmela Padavic-Callaghan
白 14 JUne 2023
"beat a supercomputer"

Experiment

What did the experiment compute?

"Kicked" quantum Ising Floquet dynamics
$U\left(\theta_{n}\right)=\left(\prod_{v, v)} \exp \left(i \frac{\pi}{4} z_{v} z_{v} z_{v}\right)\right)\left(\prod_{v} \exp \left(-i \frac{\theta_{n}}{2} x_{v}\right)\right)$
Repeatedly apply $U\left(\theta_{h}\right)$

Qubits as quantum Ising "spins":

Experiment

Zero-noise extrapolation to mitigate hardware errors

Experiment

Measure expected values of Pauli operators

O Unmitigated \bullet Mitigated - MPS $(\chi=1,024 ; 127$ qubits $) ~-~ i s o T N S ~(~ \chi=12 ; 127$ qubits $) \quad-$ Exact

Short times: exact results available
Certain tensor network methods already struggling

Experiment

Longer times (deeper circuits) with quantum processor

These tensor methods cannot keep up

Tensor Networks for Two Dimensions

Challenges for 2D tensor networks

- Can use 1D tensor networks (MPS), however cost grows exponentially

Tensor Networks for Two Dimensions

Challenges for 2D tensor networks

- There are 2D tensor networks ("PEPS" or "TNS")

but most algorithms expensive to reach high accuracy

Tensor Networks for Two Dimensions

However, we were able to simulate the same 2D lattice to high accuracy - how?

Tensor Networks for Two Dimensions

Start from tensor network state (TNS) with same topology as experiment

Tensor Networks for Two Dimensions

Ideally, for computing properties, want to fully contract "bra \& ket" copies of network

Top-down view

Tensor Networks for Two Dimensions

Ideally would get "full environment"
(contraction with tensor to optimize removed)

Tensor Networks for Two Dimensions

We will make a seemingly drastic approximation

Belief Propagation

Use "belief propagation" to converge the messages until self-consistency

Belief Propagation

Use "belief propagation" to converge the messages until self-consistency

Belief Propagation

Use "belief propagation" to converge the messages until self-consistency

Belief Propagation

Use "belief propagation" to converge the messages until self-consistency

Belief Propagation

After messages converged, apply gates to evolve one step in time

Belief Propagation

Belief propagation method aspects:

- if lattice has no loops, fully controlled
- can run on any lattice

- cheap: use huge internal bond dimensions χ
- similar to mean-field theory, but likely much more accurate
- can do dynamics on top

Sahu, Swingle, arxiv:2206.04701
Guo, Poletti, Arad, arxiv:2301.05844
Tindall, Fishman, arxiv:2306.17837

How well does it work?

Test on verifiable, small systems

Larger lattices help!

How well does it work?

Nearly exact for verifiable regime (5 time steps)

Only minutes running on M1 Macbook Pro

How well does it work?

Remains highly accurate for larger depths

Larger χ requires \sim day on cluster node
Use trick involving extra evolution to get 3-Pauli operators

How well does it work?

Many other simulations have come out!
Kechedzhi et al., arxiv:2306.15970
Begušić, Chan, arxiv:2306.16372
finite-size \& lightcone extrapolations

Clifford perturbation theory
Anand et al. arxiv:2306.17839
Begušić, Gray, Chan, arxiv:2308.05077
Liao et al., arxiv:2308.03082
tensor networks
tensor networks
tensor networks

All agree with our results, some very closely

Based on more detailed per-time-step analysis \& MPS comparison, we believe ours are highly accurate

Summary: Ising on Heavy-Hex

Apparently Ising on 2D heavy-hex lattice has "tree-like" correlations (as if loops played no role)

Belief propagation tensor network method very effective for dynamics in this case

Can study large 2D quantum systems evolving in time

Thoughts \& Future Directions

Tensor networks defining boundary between hard vs. easy quantum problems

Helping to quantum computing to focus on problems with greatest opportunity

On classical side, how many quantum algorithms can be brought into classical world, becoming "quantum-inspired classical"

Can get benefits of certain quantum algorithms today, on existing computers

