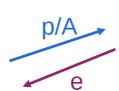


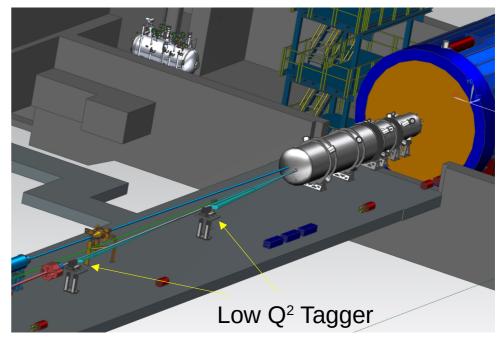
Low Q² Tagger

Jaroslav Adam¹, Simon Gardner², Derek Glazier², Ken Livingston²

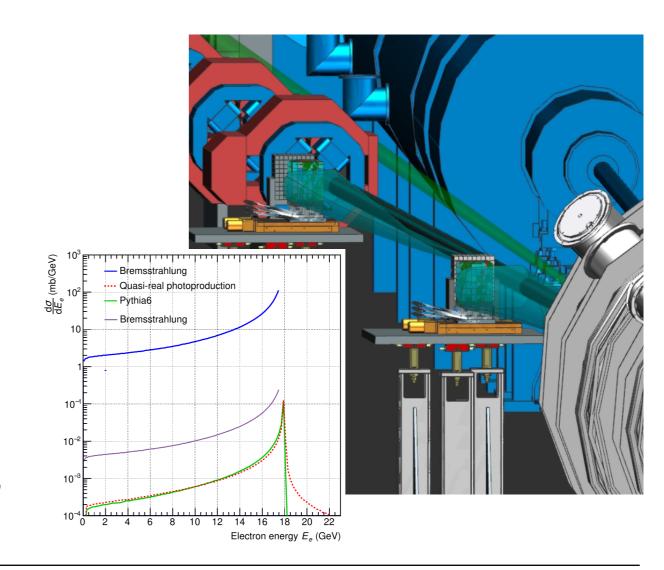
Far-forward/ far-backward Review Feb. 12, 2024

Electron-Ion Collider




Charge Questions to be Addressed

- 1. Are the technical performance requirements appropriately defined and complete for this stage of the project?
- 2. Are the plans for achieving detector performance and construction sufficiently developed and documented for the present phase of the project?
- 3. Are the current designs and plans for detectors and electronics readout likely to achieve the performance requirements with a low risk of cost increases, schedule delays, and technical problems?
- 4. Are the fabrication and assembly plans for the various detector systems appropriately developed for the present phase of the project?
- 5. Are the plans for detector integration in the interaction region appropriately developed for the present phase of the project?
- 6. Have ES&H and QA considerations been adequately incorporated into the designs at their present stage?


Outline

- Requirements for Low Q² detector
- Technology
- Simulation
- Status and Plans
- Quality Assurance
- EH&S
- Summary

- Increase Q² acceptance
- Allow quasi real (Q²~0) physics
- Very close to beamline.
 - 2 Taggers
 - Pixel based trackers
 - Rate capability and pixel resolution to identify > 10 tracks per beam bunch (brem BG)
 - $E_{\sigma} < 1\%$, $\theta_{\sigma} < 0.5$ mrad, $\Phi_{\sigma} < 5$ deg
 - Calorimeters
 - for calibration, alignment and monitoring of trackers, Luminosity and PS.

Requirements - Rate

70 kHz

Q.R.

Brem.

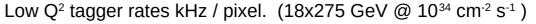
High Brem BG, Non uniform distribution.

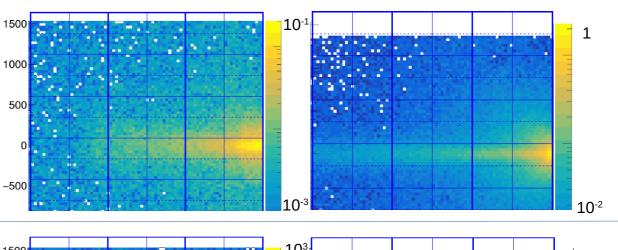
Maximum rates

Pixel (P1)

` '		
2 column (C1)	8 MHz	
Tpix4 (T1)	600 MHz	38 Gb/s
Board (B1)	1500 MHz	96 Gb/s
Layer (L1)	2500 MHz	160 Gb/s

Total integrated rates

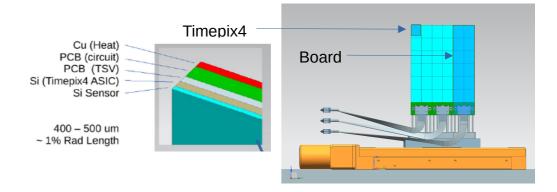

Total	9 GHz	600 Gb/s
Tagger 2	7 GHz	480 Gb/s
Tagger 1	2 GHz	130 Gb/s

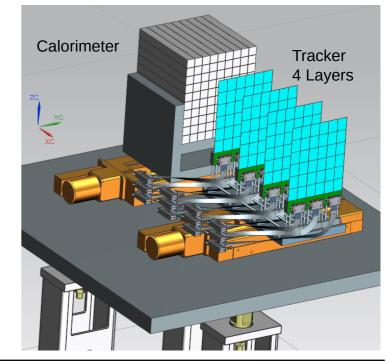

Data buffered & filtered: need a hadron in main detector

Trigger rate: 500 kHz: 99.4% rejection (brem only)

Data rate (signal): 4 Gb/s

Data rate (incl BG and rand sample) <20 Gb/s To tape

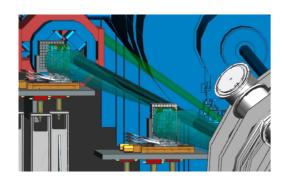

Technology

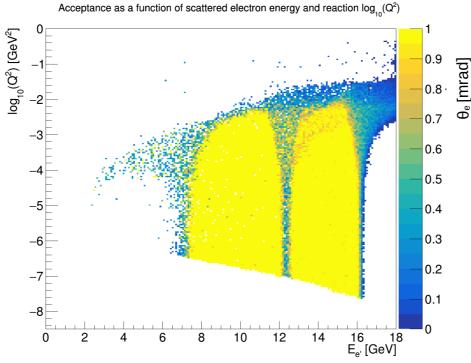

Tracker

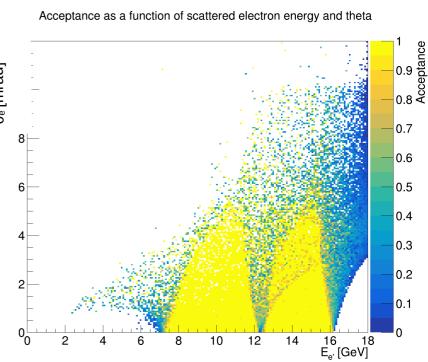
- Timepix4 Hybrid (ASIC+Si) + SPIDR4 readout.
 - Pixels: 55x55 um. 448 x 512 pixels. Area = 6.94 cm²
 - Individual thresholds, data driven
 - Timing: < 2 ns.
 - Rates: < 5.5 MHz per 2x256 column
- Layout
 - 1 board: 6x2 Timepix4 → SPIDR4 readout.
 - 1 layer: 3 boards
 - 1 tagger: 4 layers → total of 12 boards, 144 x Timepix4
 - Documented at https://arxiv.org/abs/2305.02079

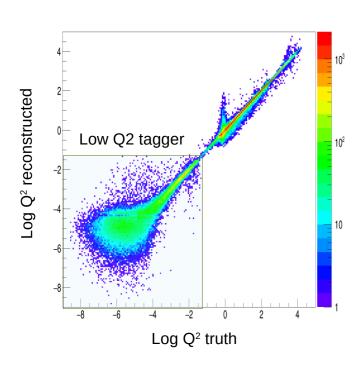
Calorimeter

- Scintillating Fibre Calorimeter. See Other FB Calorimeters, fECAL.
 - 18x18x18 cm cube → 900 3x3 mm Hamamatsu SiPMs

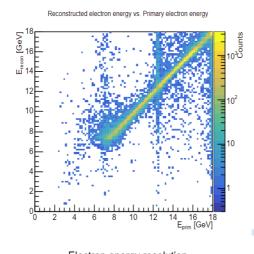


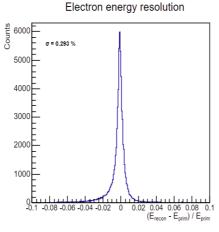


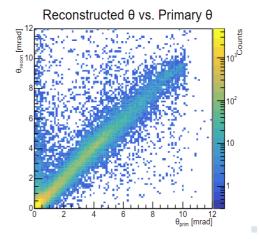

Simulation includes all mechanical components, beam smearing. Not beam gas, synchrotron radiation.

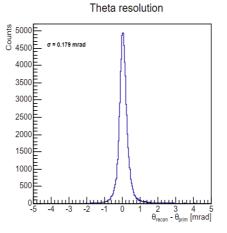

% scattered electrons reconstructed in tagger :

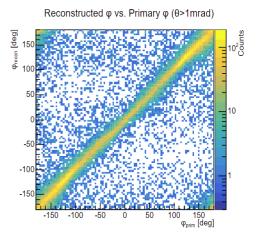
10% from all collisions15% of all electrons < 11 mrad(Low Q²)

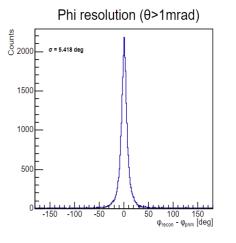


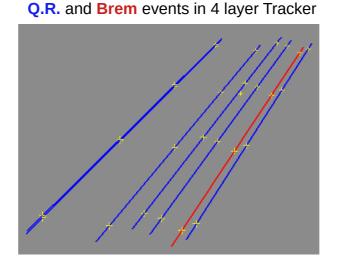


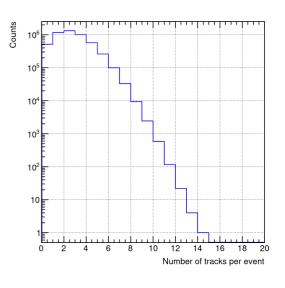

Integrated resolutions of reconstructed particles


 $E_{\sigma} = 0.3 \%$ $\theta_{\sigma} = 0.2 \text{ mrad}$


 $\Phi_{\sigma} = 5 \deg$







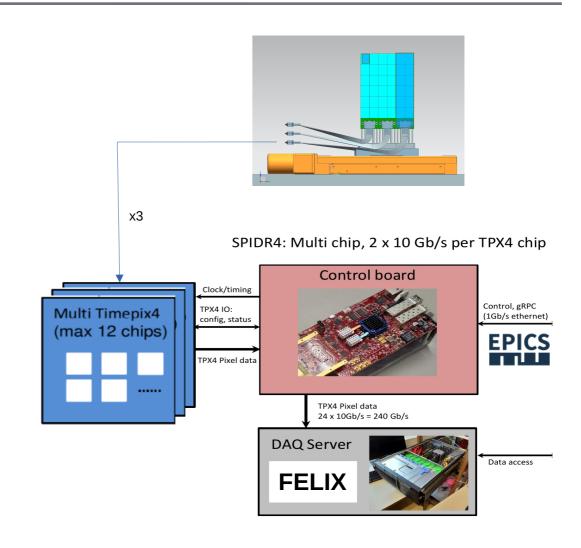
Simulation – tracking

Tracking

- Can be many tracks per event, and extra clusters from noise + BG.
- Most events are brem only.
- Machine Learning
 - >99% efficient on mix of QR+brem

ML + FPGA

- Collaborating with Jlab group (generic R&D project)
 - Particle identification and tracking in real time using Machine Learning on FPGA
- Excellent preliminary results (See backups)
 - S. Gardner: Object Condensation for Track Building in a Backward Electron Tagger at the EIC @ AI4EIC, Nov 2023, CUA, Washington D.C.


Readout and DAQ

Tracker

- Timepix4 readout SPIDR4, NIKHEF
- Digitization on ASIC. Individual thresholds. Very low noise.
- Control board, handle up to 12 Timepix4
- Data → FELIX boards / Buffering
- Buffered data filtered on coincidence with central detector

Calorimeter

- Fibres → SiPM → standard DAQ channels
- 2 x 900 channels per calorimeter = 900

Status and plans

Tracker

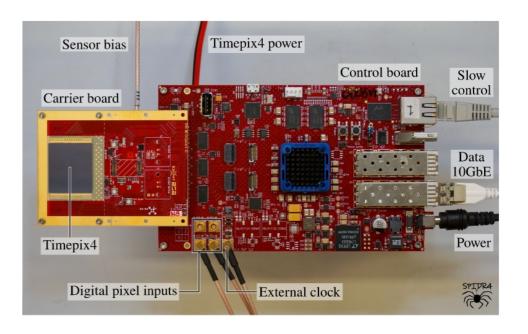
2 x SPIDR4 kits in GlasgowJan 2024

Engineering test model.
 May 2024

Engineering tests in Europe
 Summer 2024

Final design complete
 May 2025

Engineering + DAQ test in Jlab
 Sep 2025


Start of construction
 Oct 2026

_

Calorimeter

Final design complete, review, start of construction
 May 2025

Ready for installation (cosmic tests at BNL)
 Oct 2030

Quality assurance

Tracker

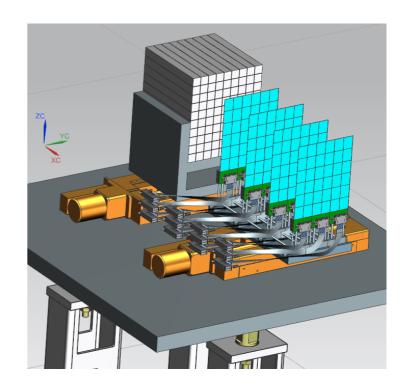
- Timepix4 trackers developed in cooperation with the Timepix collaboration and Glasgow ATLAS group,
 who were played a leading role in the producing the ITk pixel tracker for the LHCB upgrade. Well tested. Robust for production an testing across several institutes in different countries.
- Pre-production: Test beams (full chain production test and DAQ), Rates, Radiation hardness, cooling.
- During production: Manual on production and testing, check-lists, detailed spread-sheets with numbers and QA parameters. Test beams (full chain production test and DAQ)
- Transportation procedure: define and document.
- Assembly and installation procedure: define and document.

Calorimeter

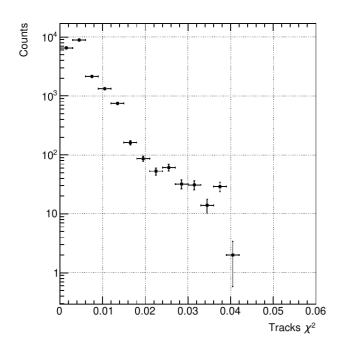
- Synergy with others: FB calorimeters and fECAL
- QA and production procedures: to be developed together with above groups.

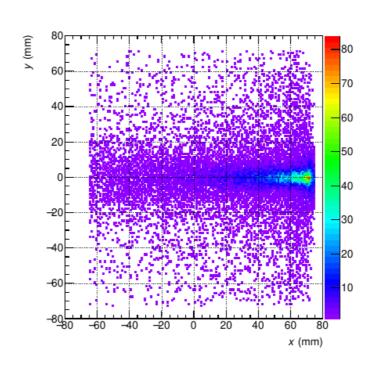
ES&H

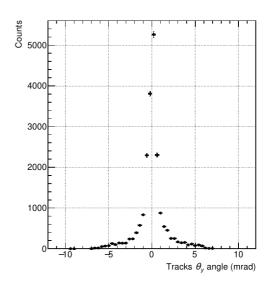
- Follow all procedures laid out by BNL and other labs where preduction test and development are carried out.
- **During the engineering design phase**: Include production of mockups and engineering test articles to insure the proper functionality and quality.
- Full production chain tests for each sub-system.
 - For operation with HV and Cooling: we will ensure that these are mechanically secure and not a trip hazard, have proper warning signs and follow the lab procedures for electrical safety.
 - Operation near the beam-pipe and vacuum: anyone working near the far-forward/backward detectors to wears ear protection, and will post signage to that effect.

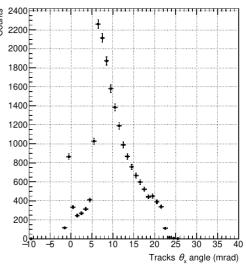

Summary

Low Q² Tagger

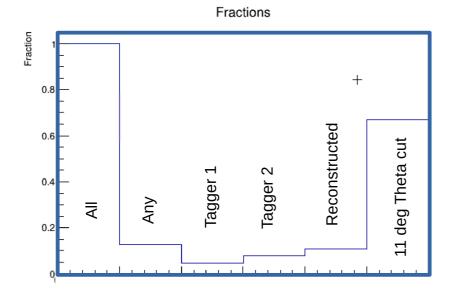

- Pixel based tracker
 - Timepix4 + SPIDR4
 - Required due to extremely high rates small pixels

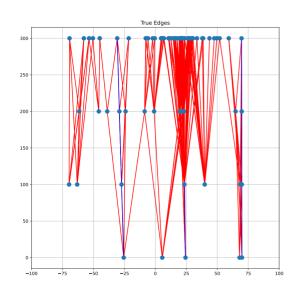

high rate readout

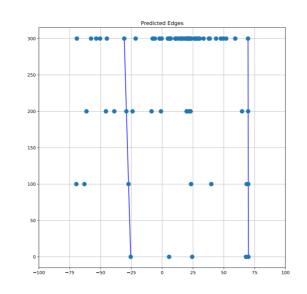

- Basic design well established
- Construction of first test article already underway
- Calorimeter
 - Design established
 - Close synergies with other FB calorimeters and fECAL.

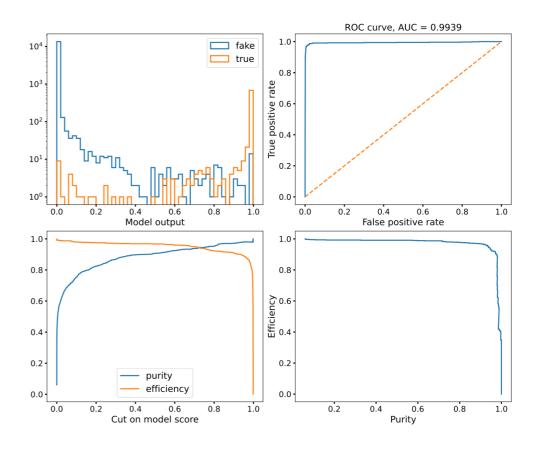


Tracking



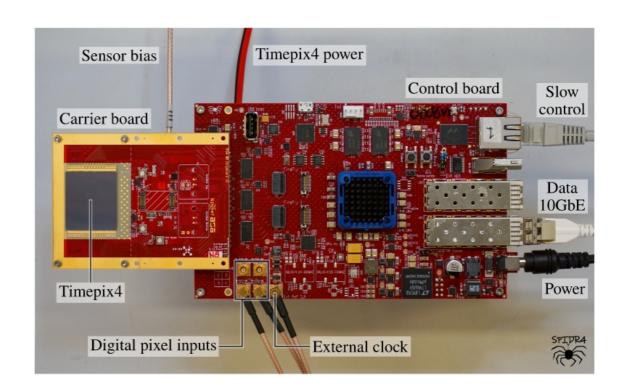



Tagger acceptance fractions



Backup slides. FPGA Machine Learning

• Timepix4 + SPIDR4 Engineering test setup.



Timepix3 vs Timepix4

Timepix4: A 4-side tillable large single threshold particle detector chip with improved energy and time resolution and with high-rate imaging

			Timepix3 (2013)	Timepix4 (2019)
Tec	chnology 130nm – 8 metal 65nm – 10 metal		65nm – 10 metal	
Pix	el Size		55 x 55 μm	55 x 55 μm
Pixel arrangement		nt	3-side buttable 256 x 256	4-side buttable 512 x 448 3.5x
Sensitive area		1.98 cm²	6.94 cm ²	
		Mode	TOT and TOA	
Data driven (Tracking) Frame based (Imaging)	Event Packet	48-bit	64-bit 33%	
	Max rate	0.43x106 hits/mm²/s	3.58x10 ⁶ hits/mm ² /s	
	Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel 8x	
	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-b	
	Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel a <mark>啰</mark> 炊	
		Max count rate	~0.82 x 10 ⁹ hits/mm ² /s	~5 x 10 ⁹ hits/mm ² /s 8x
TOT energy resolution		lution	< 2KeV	< 1Kev
Time resolution			1.56ns	~200ps
Readout bandwidth		dth	≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps)

Xavier.llopart@cern.ch Medipix Symposium, Sept 2019

K. Heijhoff et al 2022 JINST 17 P07006

Calorimeter

Position resolution.

The tracks are projected to the calorimeter front and difference is taken between track projected position and calorimeter reconstructed position in x and y, shown on the plot as DeltaX_track-cal and DeltaY_track-cal.

