



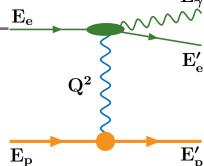






# **Luminosity Direct Photon Calorimeters**

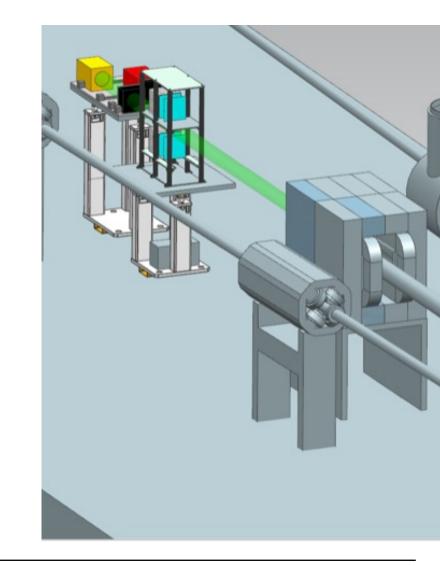
Krzysztof PIOTRZKOWSKI (AGH)


Far-forward/ far-backward Review Feb. 12, 2024

Electron-Ion Collider



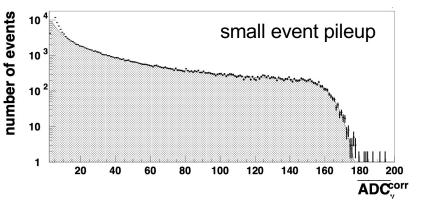
# Direct photon calorimeters: physics requirements


Direct photon (movable) calorimeters are a must at the EIC, to ensure at least 1% precision of EIC luminosity determination + high robustness:

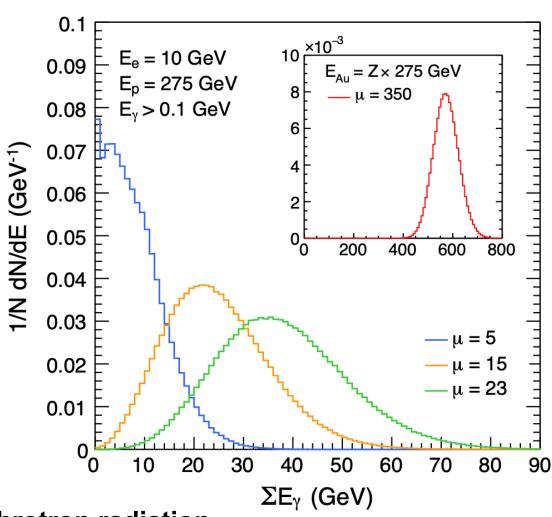


- 1. Needed for very precise measurements of **full bremsstrahlung spectrum** at all beam energies to verify bremsstrahlung suppression due to beam-size effects
- 2. Needed for very precise <1% reference luminosity measurements
- 3. Direct photon calorimeter will be used for  $\leq 1\%$  routine luminosity measurements during initial ePIC years, for L up to about  $10^{33}$  cm<sup>-2</sup>s<sup>-1</sup> (with *complementary* systematics wrt PS luminosity)
- 4. During this initial EIC phase direct photon calorimeter will be also used for unique measurements of **Initial State Radiation** (ISR) in DIS.
- 5. At nominal luminosity, it will play crucial role in achieving required **10**-4 **precision** on "bunch-to-bunch" **relative luminosity measurements**, and may still provide 1% precision on absolute *L*
- 6. Associated SR monitors will provide **fast, bunch-to-bunch**, **synchrotron radiation level feedback** to machine

# Direct photon measurements: detector requirements

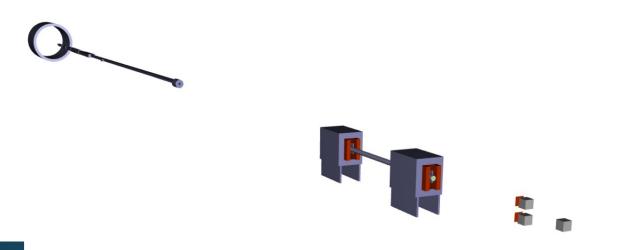

- 1. For reference luminosity measurements and for running at low and medium luminosity  $\Rightarrow$  calorimeter with very good energy resolution of  $<15\%/\sqrt{E}$  is needed, to fully profit from powerful data-driven calibration techniques, and to ensure precise ISR measurements
- 2. At nominal luminosity, as good photon energy resolution is demanded as is possible in extreme running conditions
- 3. Detectors (and their FEE) have to withstand huge event rates, and channel occupancies reaching 100% already at medium luminosities




# **Working conditions**

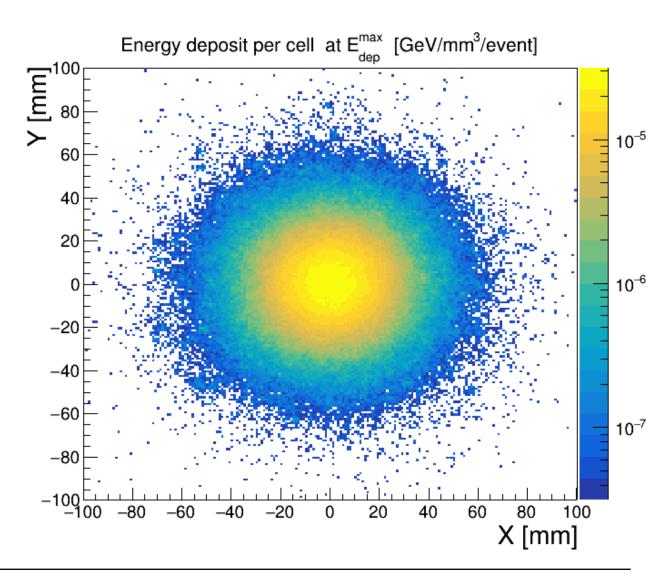
Two major challenges must be coped with:

1. Huge and unavoidable irradiation of active material (Sci/Q) due to bremsstrahlung itself, at EIC every 10 ns ⇒

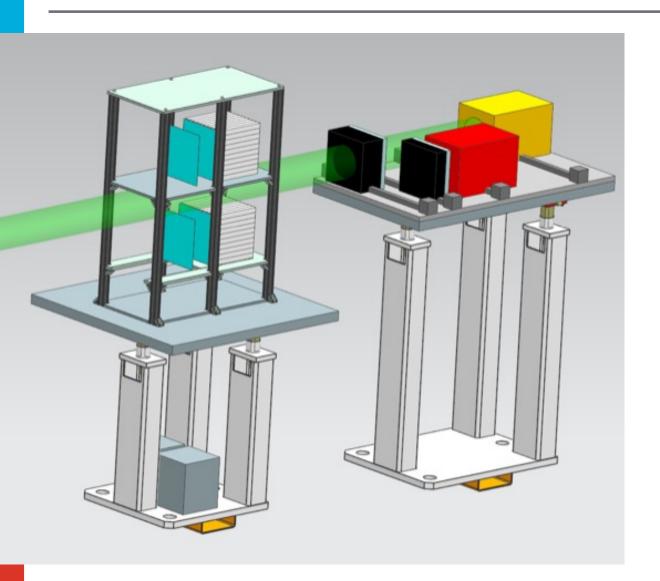



HERA I – measured bremsstrahlung spectrum – Acta Phys. Polon. B 32 (2001)




2. Huge and unavoidable flux of (direct) synchrotron radiation

## Simulations of direct photon calorimeter irradiations



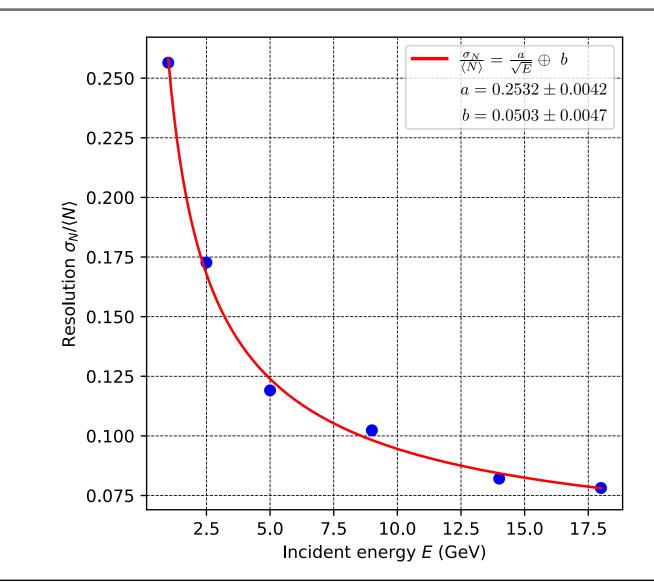

G4 simulations predict maximal irradiation density of about **2 MeV/g** per photon ⇒ maximal annual (local) dose, assuming 100 fb<sup>-1</sup>, of about **7 MGy**!

- Only quartz fibers can be used then
- ▶ Irradiation levels can be partially mitigated by changing calorimeter position from time to time
  ⇒ at 10 fb<sup>-1</sup> one can use SciFi as dose < 0.1 MGy</li>



## **SR filtering**




- 1. No extra SR attenuation needed at 5 GeV
- 2. Only 5 cm graphite block ( $< 0.3 X_0$ ) is needed to stop all SR at 10 GeV
- 3. 35 cm graphite (< 2 X<sub>0</sub>) is needed to stop SR at 18 GeV it is good news as such filter was used for direct photons at HERA I, when 1% luminosity precision was achieved

#### Calorimeter baselines

- **1. Tungsten SciFi** direct photon calorimeter will capitalize on fECAL developments  $\Rightarrow$  4×4 configuration of fECAL towers with 10×10 readout cell configuration using SiPM (100 channels to digitize) with expected resolution of 12%/ $\sqrt{E}$   $\Rightarrow$  to be used at low/medium luminosity and for reference/calibration runs
- 2. Copper QFi direct photon calorimeter will be developed/built in collaboration with CTU/Prague colleagues its tentative configuration: 1.5 mm diam. quartz fibers spaced by 2.5 mm ⇒ same 10×10 readout configuration with SiPM (100 channels to digitize) ⇒ to be used at nominal luminosity
- + **SR monitor**: 16 hor. + 12 ver. quartz "fingers" with SiPM readout (28 channels to digitize)

#### **QFi** simulations

Performance of copper quartz fiber calorimeter (as used in ALICE) for 1.5 mm fiber diameter and 2.5 mm fiber spacing  $\Rightarrow$  25%/ $\sqrt{E}$ [GeV] energy resolution obtained assuming PDE = 40%

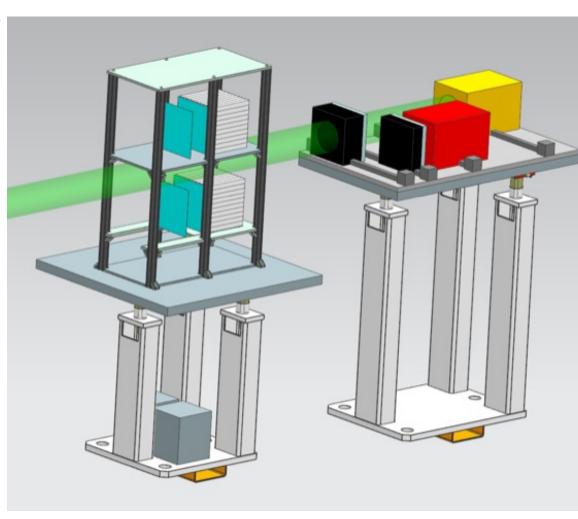


#### FEE

228 readout channel signals (128 at a time) will be digitized with **200 MHz sampling rate with 10-bit resolution**, using custom-made boards with flash ADC. These cards will be streaming out **ALL** data @256 Gb/s

Note: same cards can be used for FEE of low-Q<sup>2</sup> calorimeters for medium to high luminosity running, when their channel occupancy becomes close to 100%

Working example: JLab FADC250 16-channel VME boards with 250 MHz sampling rate and up to 12-bit resolution ⇒




#### Infrastructure items

Direct photon system does **not** interfere with beamline elements and is composed of:

- 1. Support table is of 1 m<sup>2</sup> size with about 100 kg load, unless overall shielding is also supported
- 2. 4 (5) movable "tablettes" for 2 (3) SR filters with quartz monitors + 2 calorimeters
- 3. Low power (Peltier) calorimeter cooling
- 4. On-detector electronics

No other media needed but LV/HV



## **Developments and test beams**

- 1. First QFi prototypes should be ready for test beams in 2025 to verify G4 modelling + precisely measure impact of dead material/filters in front
- 2. By end of 2025 we should have very good understanding of front-end electronics requirements and perform first tests of proposed solutions

## **Summary**

- 1. Working conditions for direct photon calorimeters are well understood now huge SR flux can be well attenuated
- 2. Direct photon calorimeters' baseline has been established
- 3. First calorimeter prototypes including initial FEE cards should be ready in 2025 for studies at test beams