eA study group

Coherent VM production

13 February 2024

Zvi Citron¹, Eden Mautner¹, <u>Michael Pitt</u>^{1,2} ¹Ben Gurion University of the Negev (Israel) ²The University of Kansas (USA)

אוניברסיטת בן-גוריון בנגב جامعة بن غوريون في النقب Ben-Gurion University of the Negev

Introduction

Goals

- Probing the low-X structure of the nucleus
- Probing spatial parton structure of nuclei

Methodology

- Measuring coherent vector meson (VM) production
- Differential cross-section $(d\sigma/dt)$ as a function of momentum transfer \rightarrow spatial distributions of gluons

Event Kinematics

- Reconstruction of parameters of interest:
 - e incoming electron (determined by beam parameters)
 - e' outgoing electron (measured)
 - *VM* vector meson (measured)
- Energy scale Q2 = -(e e').M2()
- Momentum transfer -t = (VM (e e')).M2()
- Meson transverse momentum VM_PT=VM.Pt()

Event Kinematics

- Reconstruction of parameters of interest:
 - e incoming electron (determined by beam parameters)
 - e' outgoing electron (measured)
 - *VM* vector meson (measured)
- Energy scale Q2 = -(e e').M2()
- Momentum transfer -t = (VM (e e')).M2()
- Meson transverse momentum VM_PT=VM.Pt()

The main background is $e + A \rightarrow e' + A' + VM + X$, with $A \neq A'$

M. Pitt

Signal simulation

- Simulation with eStarlight¹: $e + A \rightarrow VM + e' + A'$
- Options (consider only one):

lons ¹⁶O, ⁶³Cu, ⁹⁰Zr and ²⁰⁸Pb

Vector mesons: rho, omega, J/ψ , Phi, Upsilon Beam energy: 18x275 (~18x108 for ePb), 5x41

Consider two Q2 regions:

Drocoss	Cross section (different Q2)			
Process	-4 < log(Q2) < 0	0 < log(Q2) < 2		
Ј/ѱ→ее	66.119 nb	4.826 nb		
J/ψ→μμ	66.087 nb	4.946 nb		

¹<u>https://github.com/eic/estarlight</u>

Propagation through air in z>40m

Background simulation

BeAGLE V1.03.02 (https://eic.github.io/software/beagle.html)

PROJPAR					ELEC	CTRON
TARPAR	208	.0 82	.0			
TAUFOR	10.0	0 25.	.0 1.	0		
FERMI	2	0.62	1	0		
*	yMin	yMax	Q2Mii	n Q2Max	x theta	a_Min theta_Max
L-TAG	0.01	0.95	1.0	100.0	0.0	6.29
* model selection (0=all, 1=rho,2=omega,3=phi,4=J/psi)						I=J/psi)
PYVECTC	ORS 4					
USERSET	15	9.	0			
MODEL					PYTI	HIA
* if PYTH	IIA mode	l specify	y pythia	input car	ďs	
PY-INPU	Г				S3V.	JL003

Execution time: Standard: 210 s/Event Vacuum: 70 s/Event

Using t-Filter for t<0.07 Filter efficiency ε~40%

Simulate two samples: $-4 < \log(Q^2) < 0$ and $0 < \log(Q^2) < 2$

Afterburner configuration

Using eic-shell and abconv -p 2 (<u>https://github.com/eic/afterburner</u>)

A ab afterburner is used 1 A ab_crossing_angle 0.025 A ab_hadron_beta_crab_hor 500000 A ab_hadron_beta_star_hor 910 A ab_hadron_beta_star_ver 40 A ab_hadron_divergence_hor 0.000218 A ab_hadron_divergence_ver 0.000379 A ab_hadron_rms_bunch_length 70 A ab_hadron_rms_emittance_hor 4.32e-05 A ab_hadron_rms_emittance_ver 5.8e-06 A ab_lepton_beta_crab_hor 150000 A ab_lepton_beta_star_hor 1960 A ab_lepton_beta_star_ver 410 A ab_lepton_divergence_hor 0.000101 A ab_lepton_divergence_ver 3.7e-05 A ab_lepton_rms_bunch_length 9 A ab_lepton_rms_emittance_hor 2e-05 A ab_lepton_rms_emittance_ver 6e-07 A ab use beam bunch sim 1

Afterburner configuration

Compare vtx distribution stored in hepmc files used in the simulation before and after the afterburner

Vertex coordinates (x,y,z,t?) obtained from "E" line in the hepmc files (in mm)

Afterburner configuration

Compare outgoing electron distribution before and after the afterburner

Afterburner configuration

Compare outgoing electron distribution before (left) and after (right) the afterburner

Correlation with Q2 are lost for low log(Q2) values (Q2 > 10⁻⁴)

Momentum transfer and Q2

Q2 dependence

- Q² is correlated with outgoing electron rapidity.
- Only for low Q, VM pT is correlated with the t
- Can we measure backward electron to reach a low Q?

eStarLight Simulation

Work in progress

10[:]

M. Pitt

ePb 18×110

 $Q^2 < 0.01$

Event Selection

- 3 track events (with 2 tracks in $|\eta| < 4$)
- VM mass window of 0.4 GeV
- Veto activity in forward region (reco/hits):
 B0 tracks, B0 clusters, OMD tracks, RP tracks,
 Ecal and Hcal ZDC Clusters

Signal efficiency for different Q² regions:

	electrons		Muons	
Cut	1 GeV <q 10="" <="" gev<="" th=""><th>0.01 GeV <q 1="" <="" gev<="" th=""><th>1 GeV <q 10="" <="" gev<="" th=""><th>0.01 GeV <q 1="" <="" gev<="" th=""></q></th></q></th></q></th></q>	0.01 GeV <q 1="" <="" gev<="" th=""><th>1 GeV <q 10="" <="" gev<="" th=""><th>0.01 GeV <q 1="" <="" gev<="" th=""></q></th></q></th></q>	1 GeV <q 10="" <="" gev<="" th=""><th>0.01 GeV <q 1="" <="" gev<="" th=""></q></th></q>	0.01 GeV <q 1="" <="" gev<="" th=""></q>
3 tracks	0.975394	0.366818	0.9755	0.371375
VM mass cut	0.858704	0.100727	0.9235	0.107313
Veto FFD	0.858693	0.100727	0.9235	0.107313

Event Selection

- 3 track events (with 2 tracks in $|\eta| < 4$)
- VM mass window of 0.4 GeV
- Veto activity in forward region (reco/hits):
 B0 tracks, B0 clusters, OMD tracks, RP tracks,
 Ecal and Hcal ZDC Clusters

Signal efficiency for different Q² regions:

	electrons		Muons	
Cut	1 GeV <q 10="" <="" gev<="" th=""><th>0.01 GeV <q 1="" <="" gev<="" th=""><th>1 GeV <q 10="" <="" gev<="" th=""><th>0.01 GeV <q 1="" <="" gev<="" th=""></q></th></q></th></q></th></q>	0.01 GeV <q 1="" <="" gev<="" th=""><th>1 GeV <q 10="" <="" gev<="" th=""><th>0.01 GeV <q 1="" <="" gev<="" th=""></q></th></q></th></q>	1 GeV <q 10="" <="" gev<="" th=""><th>0.01 GeV <q 1="" <="" gev<="" th=""></q></th></q>	0.01 GeV <q 1="" <="" gev<="" th=""></q>
3 tracks	0.975394	0.366818	0.9755	0.371375
VM mass cut	0.858704	0.100727	0.9235	0.107313
Veto FFD	0.858693	0.100727	0.9235	0.107313

Event categorization

- Depends on the electron reconstructed eta
 - Central detector: 4.9 nb x 0.9 ~ 4.4 nb
 - Low-Q2 taggers: 66 nb x 0.1 ~ 6.6 nb

Event Kinematics

Reconstruction of parameters of interest:

- *e* incoming electron (fixed)
- e' outgoing electron (measured)
- VM vector meson (measured)
- Momentum transfer -t = (VM (e e')).M2()

Adding low-Q2 category double statistics

t reconstruction

- Using MethodL (with Pb mass constrain <u>link</u>):
 - Better modeling of the t variable

Compare to results with "vacuum" at very low Q2

• Reconstruction is much worser

VM PT reconstruction

- At very low Q, t can be approximated as VM PT, but not for Q>0.01
 - The dip is not seen at the generated
 level
 - Only very low Q2 category can be used

Summary and discussion

Summary

- Simulation:
 - Signal: lons removed (air at Z>40)
 - Background: Processed in vacuum (otherwise take too long)
 - Condor jobs take forever
- t-reconstruction for the signal gets much worse with world="Air" need to improve particle resolution
 - Unfolding?
 - e/mu energy corrections?

Cross-sections

Different mesons

• All vector meson production processes show the same t spectra, J/psi has the highest cross-section.

Momentum transfer

Different mesons at low Q2

• Similar spectra for different VM

Event categorization

- Depends on the electron reconstructed eta
 - Central detector: ~10% of all Q²<10 GeV
 - Low-Q2 taggers: ~40% of all Q²<10 GeV

Event Kinematics

Reconstruction of parameters of interest:

- *e* incoming electron (fixed)
- e' outgoing electron (measured)
- *VM* vector meson (measured)
- Momentum transfer -t = (VM (e e')).M2()

Background rejection

Backgrounds

- The main background is incoherent VM production
- Modify the strategy (from object rejection to signal rejection)
- Work by Eden Mautner (in progress)
 - Veto.1: no activity other than e^- and J/ψ in the main detector ($|\eta| < 4.0$ and $p_T > 100 \text{ MeV}/c$);
 - Veto.2: Veto.1 and no neutron in ZDC;
 - Veto.3: Veto.2 and no proton in RP;
 - Veto.4: Veto.3 and no proton in OMDs;
 - Veto.5: Veto.4 and no proton in B0;
 - Veto.6: Veto.5 and no photon in B0;
 - Veto.7: Veto.6 and no photon with E > 50 MeV in ZDC.

Cut	1GeV <q²<10 gev<="" th=""><th>10⁻⁴ <q<sup>2 <100 GeV</q<sup></th></q²<10>	10 ⁻⁴ <q<sup>2 <100 GeV</q<sup>
3 tracks	0.876579	
VM mass cut	0.843891	
Veto B0	0.488994	
Veto RP/OMD	0.0953154	
Veto ZDC	0.0255769	

t reconstruction

- Using MethodL (with Pb mass constrain <u>link</u>):
 - Better modeling of the t variable

Larger effect from VM reconstruction

• At low Q electron do not have impact

