eA study group

Incoherent VM production

02 April 2024

Zvi Citron¹, Eden Mautner¹, Michael Pitt^{1,2}

¹Ben Gurion University of the Negev (Israel) ²The University of Kansas (USA)

Introduction

Motivation

 Incoherent VM production is the main background process to the coherent one

Methodology

 Incoherent processes are detected via the ion decay products

Incoherent VM

Incoherent production

Background simulation

BeAGLE V1.03.02 (https://eic.github.io/software/beagle.html)

PROJPAR					ELEC	TRON
TARPAR	208	.0 82	.0			
TAUFOR	10.	0 25.	0 1.	0		
FERMI	2	0.62	1	0		
*	yMin	yMax	Q2Mir	ו Q2Ma	ax theta	
L-TAG	0.01	0.95	1.0	100.0	0.0	6.29
* model selection (0=all, 1=rho,2=omega,3=phi,4=J/psi) PYVECTORS 4						
USERSET	15	9.	0			
MODEL					PYTH	IIA
* if PYTHIA model specify pythia input cards						
PY-INPU	Г				S3VJ	L003

Simulate two samples: $-4 < \log(Q^2) < 0$ and $0 < \log(Q^2) < 2$

Q2 region is discussed in the next slides

Execution time: (produced in February) Standard: 210 s/Event Vacuum: 70 s/Event

Using t-Filter for t<0.07 Filter efficiency ϵ ~40%

Planning to add vacuum at Z>40m since ion remnants propagate in air between Z=40 and Z=100m

Outgoing electron scattering angle determines the photon virtuality (Q²)

- Outgoing electron scattering angle determines the photon virtuality (Q²)
- Simulation of coherent, inclusive in Q² Production in Sep 2023
- Acceptance of coherent events suggest:

 $-??? < log(Q^2) < -1.5$

 $-1.5 < log(Q^2) < 2$

- Outgoing electron scattering angle determines the photon virtuality (Q²)
- Simulation of coherent, inclusive in Q² Production in Sep 2023
- Acceptance of coherent events suggest:
- $-??? < log(Q^2) < -1.5$
- $-1.5 < log(Q^2) < 2$

Low-Q2 tagger performance:

- Electrons with Q2 < 3.5x10⁻³ cannot be distinguished
- At the design lumi, hundreds of brem. electrons produced every bunch crossing

- Outgoing electron scattering angle determines the photon virtuality (Q²)
- Simulation of coherent, inclusive in Q² Production in Sep 2023
- Acceptance of coherent events suggest:
- $-??? < log(Q^2) < -1.5$
- $-1.5 < log(Q^2) < 2$

Low-Q2 tagger performance:

- Electrons with Q2 < -3.5x10⁻³ cannot be distinguished
- At the design lumi, hundreds of brem. electrons produced every bunch crossing

- Simulation of incoherent processes
- Simulate two samples:
- $-4 < \log(Q^2) < 0$ and $0 < log(Q^2) < 2$

Simulation of incoherent processes

Simulate two samples:

 $-4 < \log(Q^2) < 0$ and $0 < log(Q^2) < 2$

Analysis

Coherent event Selection

- 3 track events (with 2 tracks in $|\eta| < 4$)
- VM mass window of 0.4 GeV
- Veto activity in forward region (reco/hits):
 B0 tracks, B0 clusters, OMD tracks, RP tracks,
 Ecal and Hcal ZDC Clusters

Signal efficiency for different Q² regions:

Adding low-Q2 category double statistics

	elect	rons	Muons		
Cut	1 GeV <q 10="" <="" gev<="" th=""><th>0.01 GeV <q 1="" <="" gev<="" th=""><th>1 GeV <q 10="" <="" gev<="" th=""><th>0.01 GeV <q 1="" <="" gev<="" th=""></q></th></q></th></q></th></q>	0.01 GeV <q 1="" <="" gev<="" th=""><th>1 GeV <q 10="" <="" gev<="" th=""><th>0.01 GeV <q 1="" <="" gev<="" th=""></q></th></q></th></q>	1 GeV <q 10="" <="" gev<="" th=""><th>0.01 GeV <q 1="" <="" gev<="" th=""></q></th></q>	0.01 GeV <q 1="" <="" gev<="" th=""></q>	
3 tracks	0.975394	0.366818	0.9755	0.371375	
VM mass cut	0.858704	0.100727	0.9235	0.107313	
Veto FFD	0.858693	0.100727	0.9235	0.107313	

Analysis

Event categorization

- Depends on the electron reconstructed eta
 - Central detector: 4.9 nb x 0.9 ~ 4.4 nb
 - Low-Q2 taggers: 66 nb x 0.1 ~ 6.6 nb

Event Kinematics

Reconstruction of parameters of interest:

- *e* incoming electron (fixed)
- *e*' outgoing electron (**measured**)
- *VM* vector meson (measured)
- Momentum transfer -t = (VM (e e')).M2()

Adding low-Q2 category double statistics

Incoherent rejection

- The main background for coherent VM production is the incoherent VM production
- Testing the veto strategy (based on reconstructed objects)

- Veto.2: Veto.1 and no neutron in ZDC;
- Veto.3: Veto.2 and no proton in RP;
- Veto.4: Veto.3 and no proton in OMDs;
- Veto.5: Veto.4 and no proton in B0;
- Veto.6: Veto.5 and no photon in B0;
- Veto.7: Veto.6 and no photon with E > 50 MeV in ZDC.

the	
;	
	Background
	efficiency based
	on ePIC FFD
	simulation
' in	

	Cut	1 GeV <q 10="" <="" gev<="" th=""><th>0.01 GeV <q 1="" <="" gev<="" th=""></q></th></q>	0.01 GeV <q 1="" <="" gev<="" th=""></q>
>	3 tracks	0.920164	0.334928
	VM mass cut	0.854001	0.126962
	Veto B0	0.465476	0.0568307
	Veto RP/OMD	0.293481	0.0353035
	Veto ZDC	0.0270966	0.00324511

Background rejection

Analysis

Coherent event Selection

- 3 track events (with 2 tracks in $|\eta| < 4$) \rightarrow define three signal regions
 - Very low Q2 (Q2 < 3.5e-3)
 - Intermediate Q2 (electron in low-Q2 tagger above background level
 - High Q2 high acceptance of outgoing electron
- VM mass window of 0.4 GeV
- Veto activity in forward region (reco/hits):

B0 tracks, B0 clusters, OMD tracks, RP tracks, Ecal and Hcal ZDC Clusters

- Need to estimate background rates
 - Electron beam gas <u>https://statics.teams.cdn.office.net/evergreen-assets/safelinks/1/atp-safelinks.html</u>
 - eA MinBias events (Pythia?)

Summary and discussion

- Simulation of incoherent events:
 - Time-consuming due to the presence of air planning to add vacuum after Z>40 m.
 - Currently, all neutrals going to ZDC, radiate particles into the RP waiting for <u>https://github.com/eic/epic/pull/665</u> to be merged to repeat the veto study
- Benchmarking scripts: need to be developed, I was hoping to add the lowQ2 taggers, yet the <u>https://github.com/eic/EICrecon/pull/675</u> is not merged
- Proposal to make three Q2 regions: Q2 in 0, 3.5-e3, 0.1, 100): very-low, intermediate, high Q2 regions
- Semi-coherent events (not discussed today) Eden is working on it (estimation of beam backgrounds <u>https://github.com/eic/ProtonBeamGas</u>, evolved into a separate study)
- TODO: t reconstruction (unfolding)

