eA study group

Incoherent VM production

02 April 2024

Zvi Citron¹, Eden Mautner¹, <u>Michael Pitt</u>^{1,2}

¹Ben Gurion University of the Negev (Israel)

²The University of Kansas (USA)

Introduction

Motivation

Incoherent VM production is the main background process to the coherent one

Methodology

Incoherent processes are detected via the ion decay products

Incoherent VM

Incoherent production

Background simulation

BeAGLE V1.03.02 (https://eic.github.io/software/beagle.html)

PROJPAR					ELE	CTRON
TARPAR	208.	0 82	.0			
TAUFOR	10.0	25.	0 1.	0		
FERMI	2	0.62	1	0		
*	yMin	yMax	Q2Mir	n Q2Ma	x thet	a_Min theta_Max
L-TAG	0.01	0.95	1.0	100.0	0.0	6.29
* model	selection	(0=all,	1=rho,2	2=omega,	3=phi,4	1=J/psi)
PYVECTO	RS 4					
USERSET	15	9.	0			
MODEL					PYT	HIA
* if PYTH	IA mode	l specify	, pythia	input car	ds	
PY-INPUT	Γ				S3V	JL003

Execution time: (produced in February)

Standard: 210 s/Event Vacuum: 70 s/Event

Using t-Filter for t<0.07 Filter efficiency ε~40%

Planning to add vacuum at Z>40m since ion remnants propagate in air between Z=40 and Z=100m

• Outgoing electron scattering angle determines the photon virtuality (Q²)

Simulation of coherent, inclusive in Q² Production in Sep 2023

Outgoing electron scattering angle determines the photon virtuality (Q²)

Simulation of coherent, inclusive in Q² Production in Sep 2023

Acceptance of coherent events suggest:

$$-??? < log(Q^2) < -1.5$$

$$-1.5 < log(Q^2) < 2$$

Outgoing electron scattering angle determines the photon virtuality (Q²)

Simulation of coherent, inclusive in Q² Production in Sep 2023

Acceptance of coherent events suggest:

$$-??? < log(Q^2) < -1.5$$

$$-1.5 < log(Q^2) < 2$$

Low-Q2 tagger performance:

- Electrons with Q2 < 3.5x10⁻³ cannot be distinguished
- At the design lumi, hundreds of brem. electrons produced every bunch crossing

Outgoing electron scattering angle determines the photon virtuality (Q²)

Simulation of coherent, inclusive in Q² Production in Sep 2023

Acceptance of coherent events suggest:

$$-??? < log(Q^2) < -1.5$$

$$-1.5 < log(Q^2) < 2$$

Low-Q2 tagger performance:

- Electrons with Q2 < -3.5x10⁻³ cannot be distinguished
- At the design lumi, hundreds of brem. electrons produced every bunch crossing

Simulation of incoherent processes

Simulate two samples:

$$-4 < \log(Q^2) < 0 \text{ and } 0 < \log(Q^2) < 2$$

Simulation of incoherent processes

Simulate two samples:

$$-4 < \log(Q^2) < 0 \text{ and } 0 < \log(Q^2) < 2$$

Analysis

Coherent event Selection

- 3 track events (with 2 tracks in $|\eta| < 4$)
- VM mass window of 0.4 GeV
- Veto activity in forward region (reco/hits):

B0 tracks, B0 clusters, OMD tracks, RP tracks,

Ecal and Hcal ZDC Clusters

Signal efficiency for different Q² regions:

Adding low-Q2 category double statistics

	elect	rons	Muons			
Cut	1 GeV <q 10="" <="" gev<="" th=""><th>0.01 GeV <q 1="" <="" gev<="" th=""><th>1 GeV <q 10="" <="" gev<="" th=""><th colspan="2">0.01 GeV <q 1="" <="" gev<="" th=""></q></th></q></th></q></th></q>	0.01 GeV <q 1="" <="" gev<="" th=""><th>1 GeV <q 10="" <="" gev<="" th=""><th colspan="2">0.01 GeV <q 1="" <="" gev<="" th=""></q></th></q></th></q>	1 GeV <q 10="" <="" gev<="" th=""><th colspan="2">0.01 GeV <q 1="" <="" gev<="" th=""></q></th></q>	0.01 GeV <q 1="" <="" gev<="" th=""></q>		
3 tracks	0.975394	0.366818	0.9755	0.371375		
VM mass cut	0.858704	0.100727	0.9235	0.107313		
Veto FFD	0.858693	0.100727	0.9235	0.107313		

Analysis

Event categorization

- Depends on the electron reconstructed eta
 - Central detector: 4.9 nb x 0.9 ~ 4.4 nb
 - Low-Q2 taggers: 66 nb x 0.1 ~ 6.6 nb

Event Kinematics

Reconstruction of parameters of interest:

e – incoming electron (fixed)

e' – outgoing electron (**measured**)

VM - vector meson (measured)

• Momentum transfer -t = (VM - (e-e')).M2()

Adding low-Q2 category double statistics

Incoherent rejection

- The main background for coherent VM production is the incoherent VM production
- Testing the veto strategy (based on reconstructed objects)

•	Veto.1:	no	activity	other	$_{\mathrm{than}}$	e^{-}	and	J/ψ	in	the
	main de	etect	tor ($ \eta $	< 4.0	and p	$_T >$	100	MeV	(/c));

- Veto.2: Veto.1 and no neutron in ZDC;
- Veto.3: Veto.2 and no proton in RP;
- Veto.4: Veto.3 and no proton in OMDs;
- Veto.5: Veto.4 and no proton in B0;
- Veto.6: Veto.5 and no photon in B0;
- Veto.7: Veto.6 and no photon with E > 50 MeV in ZDC.

Cut	1 GeV <q 10="" <="" gev<="" th=""><th colspan="3">0.01 GeV <q 1="" <="" gev<="" th=""></q></th></q>	0.01 GeV <q 1="" <="" gev<="" th=""></q>		
3 tracks	0.920164	0.334928		
VM mass cut	0.854001	0.126962		
Veto B0	0.465476	0.0568307		
Veto RP/OMD	0.293481	0.0353035		
Veto ZDC	0.0270966	0.00324511		

Background rejection

Analysis

Coherent event Selection

- 3 track events (with 2 tracks in $|\eta|<4$) \rightarrow define three signal regions
 - Very low Q2 (Q2 < 3.5e-3)
 - Intermediate Q2 (electron in low-Q2 tagger above background level
 - High Q2 high acceptance of outgoing electron
- VM mass window of 0.4 GeV
- Veto activity in forward region (reco/hits):

B0 tracks, B0 clusters, OMD tracks, RP tracks, Ecal and Hcal ZDC Clusters

- Need to estimate background rates
 - Electron beam gas https://statics.teams.cdn.office.net/evergreen-assets/safelinks/1/atp-safelinks.html
 - eA MinBias events (Pythia?)

Summary and discussion

- Simulation of incoherent events:
 - Time-consuming due to the presence of air planning to add vacuum after Z>40 m.
 - Currently, all neutrals going to ZDC, radiate particles into the RP waiting for https://github.com/eic/epic/pull/665 to be merged to repeat the veto study
- Benchmarking scripts: need to be developed, I was hoping to add the lowQ2 taggers, yet the https://github.com/eic/EICrecon/pull/675 is not merged
- Proposal to make three Q2 regions: Q2 in 0, 3.5-e3, 0.1, 100): very-low, intermediate, high
 Q2 regions
- Semi-coherent events (not discussed today) Eden is working on it (estimation of beam backgrounds https://github.com/eic/ProtonBeamGas, evolved into a separate study)
- TODO: t reconstruction (unfolding)

Backup