

Coherent $J/\psi \rightarrow l^+l^-$ Diffractive Pattern Simulations with the Muon ID Smearing

Cheuk-Ping Wong [cwong1@bnl.gov]

04-23-2023

Golden Channel

- Coherent $J/\psi \rightarrow l^+l^-$ diffractive pattern
- Exclusive measurements that involve the central, far backward and far forward detector
 - Muon ID
 - Tracking detector \rightarrow Scattered electron and J/ψ reconstructions
 - backward Ecal \rightarrow Scattered electron
 - Far forward detector \rightarrow incoherent event vetoing
 - Far backward detector \rightarrow low Q² measurements

Simulation Setup

Sartre

- eAu at 18x110 GeV
- $1 \leq Q^2 \leq 1000 \text{ GeV}^2$
- Coherent events only
- Forced $J/\psi \to l^+ l^-$
- No background

Detector

- ePIC-2023.10.0
- epic_craterlake_18x110_Au.xml
- B=1.7 T

Coherent $J/\psi \rightarrow l^+l^-$ Diffractive Pattern Simulations with the ePIC Detector Setup

Track Selections and Reconstruction

Single lepton selection

- True PID
- If the electron $\eta < -1.5$, use Ecal energy instead of momentum from tracking

J/ψ reconstruction

- |pid| = 11 or 13
- Opposite charges cut on dilepton pair
- If the invariant mass is within 2 standard deviations, the dileptons are labeled as " J/ψ decayed" dileptons

Q^2

- Scattered electrons must be negatively charged
- " J/ψ decayed" electrons are excluded
- $Q^2 = -(e_{beam} e_{scattered}).M2()$

t from method L

- Removed events with a mis-reconstructed $Q^2 < 1 \text{ GeV}^2$
- Reconstructed $J/\psi |\eta| < 1.5 \rightarrow$ avoid ambiguity between scattered and decayed electrons, and avoid poor tracking region
- Require information of the proton/ion beam
- Better t resolutions

Reconstructed J/ψ

- Larger combinatorial background at lower spectrum due to bremsstrahlung radiation when using dielectron channel
- Better J/ψ efficiency at high p/p_T using dimuon channel

Reconstructed Q²

Brookhaven

National Laboratory

- Using dielectron channel may reduce Q² efficiency since scattered electron could be mixed up as "J/ψ decayed electron"
- Events with a reconstructed Q² ≤ 1 GeV² are excluded when calculating t

Reconstructed t

- Using dimuon channel improves the coherent J/ψ diffractive measurement compared to delectron channel
 - Caveat: still using true PID in the above figures
- But improvement from using dimuon is not enough
 - → Require significant improvement in scattered electron measurements
 - \rightarrow Beyond excellent backward tracking/Ecal with a momentum/energy resolution smaller than 1%

Muon ID Smearing

Muon Identification Smearing

Initial implementation using BELLE II KLM performance

- Threshold momentum = 0.6 GeV
- Eyeballing muon ID efficiency at p < 1.5 GeV
- Constant muon ID efficiency at p > 1.5 GeV
- No mis-ID rate applied

https://docs.belle2.org/record/2895/files/Lepton_identification_Moriond_2022_v2.pdf

Reconstructed J/ψ

- Threshold muon momentum cut reduces reconstructed *J/ψ* at p > 4 GeV
- Statistics are reduced by 15-20% after µID efficiency implementation

Soft muon is important to high momentum J/ψ reconstruction

Reconstructed t ($1 \le Q^2 \le 10 \text{ GeV}^2$)

0.2

Summary

- J/ψ Diffractive Pattern using dielectron and dimuon channels with true PID
 - The dimuon channel gives better t resolution compared to dielectron channel
- Initial implementation of muon ID smearing using muon ID performance of BELLE II KLM
 - t resolution remains the same
 - No miss ID applied

