eAstudy group

Update on VM production

17 May 2024

Zvi Citron¹, Eden Mautner¹, <u>Michael Pitt^{1,2}</u>

¹Ben Gurion University of the Negev (Israel) ²The University of Kansas (USA)

Introduction

Motivation

 Incoherent VM production is the main background process to the coherent one

Methodology

 Incoherent processes are detected via the ion decay products

Incoherent VM

Introduction

Simulation updates

 New FF design (merged by Alex since Apr 4 <u>PR-665</u>), adding vacuum inside the hadron beampipe

Introduction

Simulation updates

• Extending the vacuum for z>40 (<u>RP-720</u>)

Coherent production

Signal simulation

eStarlight: https://github.com/michael-pitt/estarlight/tree/FixIonPDG

- W_MAX = -1 #Max value of w from HERA
- W_MIN = -1 #Min value of w from HERA
- W_N_BINS = 50 #Bins i w
- W_GP_MAX = -1 #Max value of W_gp
- W_GP_MIN = -1 #Min value of W_gp
- $EGA_N_BINS = 400$
- CUT_PT = 0 #Cut in pT? 0 = (no, 1 = yes)
- CUT_ETA = 0 # Cut in Eta on VM decay products

Execution time:

No ions in the record: 2.01 s/Event Standard: 183.20 s/Event PR720 (add more vacuum): 16.23 s/Event

$\sigma(Q^2 < 0.001)$	=	73.907 nb
$\sigma(0.001 < Q^2 < 0.03)$	=	25.496 nb
$\sigma(0.03 < Q^2 < 20)$	=	28.170 nb

PROD_MODE = 12 #narrow / wide switch (12 = coherent vector meson (narrow), 13 = coherent vector meson (wide)) N EVENTS = 1000

PROD_PID = 443011 # 443011 - Jpsi->ee , 443013 - Jpsi->mumu,

PYTHIA_FULL_EVENTRECORD = 1 # Write full pythia information to output (vertex, parents, daughter etc).

- QUANTUM_GLAUBER = 1 # Do a quantum Glauber calculation instead of a classical one
- SELECT_IMPULSE_VM = 0 # Impulse VM parameter

Simulate three samples: $\log(Q^2) < -3$; $0.001 < Q^2 < 0.03$; $0.03 < Q^2 < 20$

Q2 region is discussed in the next slides

Q2 and electron scattering

• The phase-space is divided into two regions Acceptance of low-Q taggers and

Acceptance in central detector

Q2 and electron scattering

• The low Q2 tagger phasespace is further divided into two regions:

0.001 < Q2 < 0.03low(Q2) < -3

Low-Q2 tagger performance:

- Electrons with log(Q2) < -3 cannot be distinguished
- At the design lumi, hundreds of brem. electrons produced every bunch crossing
- More bout Low-Q2 taggers is in <u>Simon's</u> talk
- Since last week (<u>commit</u>)

LowQ2TrackParameters \rightarrow TaggerTrackerTrackParameters LowQ2Trajectories \rightarrow TaggerTrackerTrajectories

Incoherent production

Background simulation

BeAGLE V1.03.02 (https://eic.github.io/software/beagle.html)

PROJPAR					ELE	CTRON	
TARPAR	208	.0 82	.0				
TAUFOR	10.0) 25.	.0 1	0			
FERMI	2	0.62	1	0			
*	yMin	yMax	Q2M	in Q2M	ax thet	a_Min theta_M	1ax
L-TAG	0.01	0.95	0.03	3 20.0	0.0	6.29	
* model	* model selection (0=all, 1=rho,2=omega,3=phi,4=J/psi)						
PYVECTO	DRS 4						
USERSET	[.] 15	9.	0				
MODEL					PYT	HIA	
* if PYTH	IIA mode	I specify	/ pythi	a input ca	ards		
PY-INPU	Г				S3V	JL003	

Execution time:

Standard: 313.52 s/Event <u>PR720</u> (add more vacuum): 31.29 s/Event

Majority of the execution time spent on detector response

Using t-Filter for t<0.2 Filter efficiency ε~40%

Analysis

Coherent event Selection

- 3 track events (with 2 tracks in $|\eta| < 4$)
- VM mass window of 0.4 GeV
- Veto activity in forward region (reco/hits):
 B0 tracks, B0 clusters, OMD tracks, RP tracks,
 Ecal and Hcal ZDC Clusters

Signal efficiency for different Q² regions:

Adding low-Q2 category double statistics

	electrons			Muons		
Cut	Q ² <0.001	0.001 <q<sup>2<0.03</q<sup>	0.03 <q² 20<="" <="" th=""><th>Q²<0.001</th><th>0.001<q<sup>2<0.03</q<sup></th><th>0.03 <q<sup>2 < 20</q<sup></th></q²>	Q ² <0.001	0.001 <q<sup>2<0.03</q<sup>	0.03 <q<sup>2 < 20</q<sup>
3 tracks	0.565585	0.338035	0.37418	0.566175	0.337	0.376885
VM mass cut	0.495305	0.29898	0.31144	0.52959	0.317285	0.339365
Veto FFD	0.495305	0.29897	0.31144	0.52959	0.31727	0.33935

Analysis

Event categorization

- Depends on the electron reconstructed eta (Barrel) or Q2 (Taggers)
 - Central detector: 60 nb x 0.3 ~ 20 nb
 - Low-Q2 taggers: 50 nb x 0.3 ~ 15 nb

Adding low-Q2 category double statistics

• Tagging Very-Q2 region: need to estimate backgrounds

Cut	Q ² <0.001	0.001 <q<sup>2<0.03</q<sup>	0.03 <q<sup>2 < 20</q<sup>
2 tracks	0.975	0.9666	0.60978
reco Q2<0.001	0.56631	0.0943	

Incoherent rejection

- The main background for coherent VM production is the incoherent VM production
- Testing the veto strategy (based on reconstructed objects)

- Veto.1: no activity other than e^- and J/ψ in the main detector ($|\eta| < 4.0$ and $p_T > 100 \text{ MeV}/c$);
- Veto.2: Veto.1 and no neutron in ZDC;
- Veto.3: Veto.2 and no proton in RP;
- Veto.4: Veto.3 and no proton in OMDs;
- Veto.5: Veto.4 and no proton in B0;
- Veto.6: Veto.5 and no photon in B0;
- Veto.7: Veto.6 and no photon with E > 50 MeV in ZDC.

Cut	0.001 < Q ² < 0.03	0.03 <q²< 20<="" th=""></q²<>
3 tracks	0.319094	0.449577
VM mass cut	0.290249	0.400734
Veto B0	0.133347	0.19588
Veto RP/OMD	0.133347	0.19588
Veto ZDC	0.00618824	0.00551

Incoherent rejection

- The main background for coherent VM production is the incoherent VM production
- Testing the veto strategy (based on reconstructed objects)

Cut	0.001 < Q ² < 0.03	0.03 <q²< 20<="" th=""></q²<>
3 tracks	0.319094	0.449577
VM mass cut	0.290249	0.400734
Veto B0	0.133347	0.19588
Veto RP/OMD	0.133347	0.19588
Veto ZDC	0.00618824	0.00551

Analysis

Coherent event Selection

- 3 track events (with 2 tracks in $|\eta| < 4$) \rightarrow define three signal regions
 - Very low Q2 (Q2 < 0.001)
 - Intermediate Q2 (electron in low-Q2 tagger above background level)
 - High Q2 high acceptance of outgoing electron
- VM mass window of 0.4 GeV
- Veto activity in forward region (reco/hits):

B0 tracks, B0 clusters, OMD tracks, RP tracks, Ecal and Hcal ZDC Clusters

> Need to estimate background rates in very low Q2

Summary and discussion

- Simulation:
 - Development of detector geometry is frozen, unless an unecpected developments we will proceed with the current setup
 - Blind response of OMD+RP is investigated (maybe a bug in my code), should be resolved by the next week
- The lowQ2 taggers are not in the EICRecon https://github.com/eic/EICrecon/pull/675
- Proposal to make three Q2 regions: Q2 in 0, 0.001, 0.03, 20): very-low, intermediate, high Q2 regions
- Semi-coherent events (not discussed today) Eden is working on it (estimation of beam backgrounds <u>https://github.com/eic/ProtonBeamGas</u>, evolved into a separate study)
- TODO: t reconstruction (unfolding)

Incoherent rejection

• Compare to old results

Cut	1 GeV <q 10="" <="" gev<="" th=""><th>0.01 GeV <q 1="" <="" gev<="" th=""><th>Cut</th><th>$0.001 < Q^2 < 0.03$</th><th>0.03 <q²< 20<="" th=""></q²<></th></q></th></q>	0.01 GeV <q 1="" <="" gev<="" th=""><th>Cut</th><th>$0.001 < Q^2 < 0.03$</th><th>0.03 <q²< 20<="" th=""></q²<></th></q>	Cut	$0.001 < Q^2 < 0.03$	0.03 <q²< 20<="" th=""></q²<>
3 tracks	0.920164	0.334928	3 tracks	0.319094	0.449577
VM mass cut	0.854001	0.126962	VM mass cut	0.290249	0.400734
Veto B0	0.465476	0.0568307	Veto B0	0.133347	0.19588
Veto RP/OMD	0.293481	0.0353035	Veto RP/OMD	0.133347	0.19588
Veto ZDC	0.0270966	0.00324511	Veto ZDC	0.00618824	0.00551

New geomergy

Background rejection

The Far-Forward detectors

