Charged hadron multiplicities inside of jet: Accessing Hadron Entropy?

J. Datta, C-J. Naïm and Z. Tu

Center for Frontiers in Nuclear Science

eA group meeting June 18, 2024

Entropy and Quantum Entanglement

Based on PhysRevD.95.114008:

- Von Neumann Entropy in DIS: Interpreted as the entropy of entanglement between the spatial region probed by Deep Inelastic Scattering and the rest of the proton.
- Entanglement Entropy and Parton Multiplicity: Assuming the hadron multiplicity is proportional to the multiplicity of color-singlet dipoles: relation between the parton structure function and the entropy of produced hadrons.

$$S_{\text{partons}} = \ln \left(xg\left(x, Q^2
ight)
ight) \equiv S_{\text{hadrons}}$$

Can we apply the same idea with the FF?

$$S_{hadrons} \stackrel{?}{\equiv} \ln \left(z D \left(z, \mu^2 \right) \right)$$

PYTHIA information

- pp collisions
- Hard QCD processes:
 - 1. gg to gg;
 - 2. gg to $q\bar{q}$.
- ► Anti-k_⊥ algorithm;
- Jet information:
 - 1. $R^{\text{Jets}} = 0.4;$
 - 2. p_{\perp}^{Jet} : not cut
- Initial-State Radiation (ISR): on/off
- Final-State Radiation (FSR): on/off

Observable:

Multiplicity: Charged-hadron number inside of jet, N.

Multipliticy, z, and Entropy

Left: entropy vs z and Right: P(N) distributions
 At large z ≥ 10⁻¹: the entropy increases linearly

Multipliticy, z and Entropy

Left: entropy vs z and Right: P(N) distributions
 At small z ≤ 10⁻²: the entropy seems to reach a plateau

Fragmentation Function

xFitter framework

$$D_{i}^{\pi^{\pm}}(z, Q_{0}) = \frac{\mathcal{N}_{i} z^{\alpha_{i}} (1-z)^{\beta_{i}} [1+\gamma_{i} (1-z)^{\delta_{i}}]}{B[2+\alpha_{i}, \beta_{i}+1]+\gamma_{i} B[2+\alpha_{i}, \beta_{i}+\delta_{i}+1]}$$

▶ Left: $zD_z^u(z)$ and Right: $zD_z^g(z)$ at NLO and $Q^2 = 20$ GeV²

Entropy and Fragmentation Function

Fragmentation Function used

- ▶ JAM at NLO for π
- NNPDF at NLO for π
- ×Fitter at (N)NLO for π

Our model:

$$S_{\langle n_{\rm ch} \rangle \left(p_{\rm T}^{\rm jet} \right)} = S_{\mathbf{q}/\mathbf{g}} + \ln \left(\int_{\langle z(p_{\rm T}^{\rm jet}) \rangle}^{1} dz D_{\mathbf{q}/\mathbf{g}}^{h} \left(z, p_{\rm T}^{\rm jet} \right) \right)$$

- ► Jets initiated by a *quark* or a *gluon*: → impacts the entropy differently
- $z \text{ vs } p_{\text{T}}$ is calculated using PYTHIA
- $\langle z \rangle$ is the relevant scale for the lower bound of the integral

Multiplicity, Entropy and data

[ATLAS data, arvix 1602.00988]

 \blacktriangleright < n > as a function of p_{\perp}^{jets} : plateau at large p_{\perp}^{jets}

- p_{\perp}^{jets} to z by using PYHTHIA simulation
- Data from Jet initiated by quarks or gluons also available

For each p^{jets}_⊥, we can determine a < z > value
 Using the same binning, compared data

- ▶ S calculated using ATLAS data, $P(< n >^{data}, N)$
- ▶ S calculated using D(z) from NNPDF at $Q^2 = 1000$ GeV²
- Good agreement between S_{data} and S^{model}

NNPDF Fragmentation Function

• Negligible dependence on Q^2

- ▶ S calculated using ATLAS data, $P(< n >^{data}, N)$
- S calculated using D(z) from JAM at $Q^2 = 1000 \text{ GeV}^2$
- ► Good agreement between S_{data} and S^{model} forgluons

JAM Fragmentation Function

• Negligible dependence on Q^2

Conclusion

 \rightarrow $\mathbf{Objective:}$ prove the connection between entropy in jets and in confined matter

- ATLAS data at 8 TeV show lower multiplicities for quarkcompared to gluon-initiated jets
- This directly impacts the entropy values
- ► Using the z vs p_T correlation from PYTHIA: → a link between multiplicity data and quark/gluon fragmentation functions has been demonstrated
- Very good agreement between data and NNPDF compared to JAM

 \rightarrow **Next steps:** perform similar analysis for ATLAS data at 13 TeV and estimate uncertainties (quarks/gluons jet fraction, FF, z vs p_T correlation...)