DVCS Background Study – Using Exclusive π^0

Jihee Kim (jkim11@bnl.gov) and Alex Jentsch 2024/11/26

Introduction

- \circ Hard exclusive production of π^0 mesons
 - Provide information for polarized quark GPDs
 - It has been studied at fixed target mode at JLab for example
 - Collider mode (never done yet) offers high proton polarization and coverage for much lower-x and higher Q²
 - DVMP π^0 may become a background to DVCS
- (Quick) Estimate single photon contamination (background) from exclusive π^0 sample comparing to DVCS at the most updated ePIC simulation
 - Where one of gammas from π^0 is mis-identified as DVCS photon
 - Geometrical acceptance, energy thresholds, and granularity

Sample

\circ Exclusive π^0 samples from EpIC generator

- Total ~250,000 events each beam configuration
- $_{\odot}$ Beam configuration: 5×41, 10×100, and 18×275 GeV²
- Run ePIC simulation (craterlake version)
 - Calorimeter information: EcalEndcapN / EcalBarrel / EcalEndcapP
 - Truth ID used to exclude scattered electron
 - Work with remaining clusters in calorimeters

Neutral Pion Pseudo-rapidity

Neutral Pion Energy

Most of π^0 s are going forward and their energy can be up to 25 GeV *Spike – unphysical values put in to account for "nan" values in the MC sample*

Minimum opening angle of two γ s is 10 mrad

Neutral Pion Pseudo-rapidity

Neutral Pion Energy

 π^0 s are starting to move toward central and their energy can be up to 60 GeV

Minimum opening angle of two γ s is 5 mrad

Neutral Pion Pseudo-rapidity

Neutral Pion Energy

Many π^0 s are going to central region and their energy can be up to 120 GeV

Minimum opening angle of two γ s is 2.5 mrad

5×41 GeV²

γ Kinematics – Pseudo-Rapidity

Mostly two γ s are concentrated within similar pseudo-rapidity, which means very few events where we simply lose a photon by geometric acceptance

10×100 GeV²

γ Kinematics – Pseudo-Rapidity

Mostly two γ s are concentrated within similar pseudo-rapidity, which means very few events where we simply lose a photon by geometric acceptance

18×275 GeV²

γ Kinematics – Pseudo-Rapidity

Mostly two γ s are concentrated within similar pseudo-rapidity, which means very few events where we simply lose a photon by geometric acceptance

^{5×41 GeV²} Truth VS. Reconstructed: E_{γ}

Note that all reconstructed clusters are considered as photon candidates at the moment

Truth VS. Reconstructed: E_{γ} < 1 GeV

Minimum cluster energy cut for all reconstructed clusters is set to 100 MeV

 $5 \times 41 \text{ GeV}^2$

Number of Clusters: N_{Cluster}

Slight change in number of clusters, but not much difference was made

Results – First Pass

• When it uses current clustering algorithm in the ElCrecon, <u>overall about 30</u> <u>%</u> of exclusive π^0 appears to be contamination events to DVCS in three beam configuration: 5×41, 10×100, and 18×275 GeV²

> *Based on $E_{\text{cut, cluster}} = 0.06 \text{ GeV}$ **Based on $E_{\text{cut, cluster}} = 0.1 \text{ GeV}$

5×41 GeV² Energy [GeV]	# of Events with 1 cluster reconstructed*	Contamination* to DVCS	# of Events with 1 cluster reconstructed**	Contamination** to DVCS
All $E_{\pi^0}^{MC}$	72,621 / 249,995	0.29049	73,997 / 249,995	0.295994
<mark>10×100 GeV²</mark> Energy [GeV]	# of Events with 1 cluster reconstructed*	Contamination* to DVCS	# of Events with 1 cluster reconstructed**	Contamination** to DVCS
All $E_{\pi^0}^{MC}$	73,285 / 249,845	0.293322	75,235 / 249,845	0.301127
18×275 GeV² Energy [GeV]	# of Events with 1 cluster reconstructed*	Contamination* to DVCS	# of Events with 1 cluster reconstructed**	Contamination** to DVCS
All $E_{\pi^0}^{MC}$	80,142 / 249,995	0.320574	81,345 / 249,995	0.325387

Results – First Pass

• Among about 30 % of exclusive π^0 , look at events divided into three pseudo-rapidity per each beam energy configuration

Beam Configuration	Forward	Central	Backward	Total
5×41 GeV ²	25 %	5 %	< 0.1 %	~ 30 %
10×100 GeV ²	17 %	13 %	< 0.1 %	~ 30 %
18×275 GeV ²	12 %	20 %	< 0.1 %	~ 32 %

• There might be room for improvement

- Depends on how to set optimal reconstruction parameters to form a cluster within algorithm for calorimeter
- Based on granularity of Forward EMCAL and a distance from IP, it should be able to distinguish 7.5 mrad angle
- Look at the other way for improvement in the Forward and Central region (on top of current clustering algorithm in the ElCrecon)

Event Example 1

All reconstructed hits in forward EMCAL were drawn in position (X,Y) with energy (Z)

```
With clustering algorithm in the forward, one cluster was formed. (ref. \theta_{\gamma\gamma}^{MC} \sim 0.021 rad)
```

Calculated a distance between two highest energy hits ~ 70 mm (ref. transverse size of EMCAL = 25 mm) <u>Conclusion: this event can be identified as having **two** clusters (because larger than 2*transverse size of EMCAL tower)</u>

Below list of reconstructed hits

		E	Х	Y	Z
ievt:	1	5.52979	-523.425	-271.15	3507
ievt:	1	3.93066	-573.275	-221.85	3507
ievt:	1	1.45264	-523.425	-295.8	3507
ievt:	1	0.360107	-548.35	-295.8	3507
ievt:	1	0.354004	-598.2	-221.85	3507
ievt:	1	0.268555	-548.35	-271.15	3507
ievt:	1	0.256348	-573.275	-246.5	3507
ievt:	1	0.0976562	-548.35	-246.5	3507
ievt:	1	0.0915527	-573.275	-197.2	3507
ievt:	1	0.0854492	-623.125	-221.85	3507
ievt:	1	0.0793457	-498.5	-295.8	3507

Event Example 2

All reconstructed hits in forward EMCAL were drawn in position (X,Y) with energy (Z)

```
With clustering algorithm in the forward, one cluster was formed. (ref. \theta_{\gamma\gamma}^{MC} \sim 0.025 rad)
```

Calculated a distance between two highest energy hits ~ 25 mm (ref. transverse size of EMCAL = 25 mm) <u>Conclusion: this event can be identified as having **one** clusters (because smaller than 2*transverse size of EMCAL tower)</u>

Below list of reconstructed hits

		E	Х	Y	Z
ievt:	3	5.24902	-548.35	172.55	3507
ievt:	3	3.75366	-573.275	172.55	3507
ievt:	3	1.05591	-573.275	147.9	3507
ievt:	3	0.915527	-548.35	147.9	3507
ievt:	3	0.891113	-473.575	197.2	3507
ievt:	3	0.469971	-473.575	221.85	3507
ievt:	3	0.396729	-498.5	221.85	3507
ievt:	3	0.195312	-498.5	197.2	3507
ievt:	3	0.177002	-598.2	172.55	3507
ievt:	3	0.134277	-573.275	197.2	3507
ievt:	3	0.109863	-598.2	147.9	3507

The Other Way to Find Separable Events

Forward EMCAL

Note that transverse size of EMCAL tower = 25 mm

Based on tower size for hits, Distance between two highest hits needs at least twice tower size (50 mm) to be separable

Barrel EMCAL

Based on the upper limit of the probability of merging two γ s from a π^0 decay into one cluster at $\eta = 0$, **upto** $p_{\pi^0} \sim 35$ GeV can be separable

Results – Second Pass

- o Below summaries estimated contamination from exclusive π^0 to DVCS
 - Using only clustering algorithm in ElCrecon
 - + Potential improvement in finding separable hits (Hit-level) & Barrel ML

5×41 GeV² Energy [GeV]	# of Events with 1 cluster reconstructed**	Contamination** to DVCS # of Events with 1 cluster reconstructed**		Contamination** to DVCS
All $E_{\pi^0}^{MC}$	73,997 / 249,995	0.295994	26,282 / 249,995	0.10513
<mark>10×100 GeV</mark> ² Energy [GeV]	# of Events with 1 cluster reconstructed**	Contamination** to DVCS	mination** to DVCS # of Events with 1 cluster reconstructed**	
All $E_{\pi^0}^{MC}$	75,235 / 249,845	0.301127	24,417 / 249,845	0.0977286
18×275 GeV² Energy [GeV]	# of Events with 1 cluster reconstructed**	Contamination** to DVCS	# of Events with 1 cluster reconstructed**	Contamination** to DVCS
All $E_{\pi^0}^{MC}$	81,345 / 249,995	0.325387	17,140 / 249,995	0.0685614

**Based on E_{cut, cluster} = 0.1 GeV

Even More Potential Improvement w/ ML

Forward EMCAL

22

Final Results – Contamination Estimation

- With potential improvements in discrimination γ/π^0 factor from hitlevel, Forward EMCAL and Barrel EMCAL ML
 - Appear to be below 1 % contamination (drastically improves all cases)
 - Reality probably sits somewhere between 2nd col and 3rd col (likely close to 3rd col)

	Only Clustering Algorithm		+ Potential Improvement hits & Barrel ML		+ Potential Improvement w/ Forward ML	
<mark>5×41 GeV</mark> ² Energy [GeV]	# of Events with 1 cluster reconstructed*	Contamination* to DVCS	# of Events with 1 cluster reconstructed*	Contamination* to DVCS	# of Events with 1 cluster reconstructed*	Contamination* to DVCS
All $E_{\pi^0}^{MC}$	73,997 / 249,995	0.295994	26,282 / 249,995	0.10513	279 / 249,995	0.00111602
<mark>10×100 GeV</mark> ² Energy [GeV]	# of Events with 1 cluster reconstructed*	Contamination* to DVCS	# of Events with 1 cluster reconstructed*	Contamination* to DVCS	# of Events with 1 cluster reconstructed*	Contamination* to DVCS
All $E_{\pi^0}^{MC}$	75,235 / 249,845	0.301127	24,417 / 249,845	0.0977286	250 / 249,845	0.00100062
<mark>18×275 GeV</mark> ² Energy [GeV]	# of Events with 1 cluster reconstructed*	Contamination* to DVCS	# of Events with 1 cluster reconstructed*	Contamination* to DVCS	# of Events with 1 cluster reconstructed*	Contamination* to DVCS
All $E_{\pi^0}^{MC}$	81,345 / 249,995	0.325387	17,140 / 249,995	0.0685614	193 / 249,995	0.000772015

Summary and Next Steps

- Estimated single photon contamination using exclusive π^0 sample, which is the background to DVCS
 - With potential improvements in discrimination γ/π^0 factors within ePIC detector performance, it appears to be below 1 % contamination
- Ultimately, we would like to have estimated contamination from exclusive π^0 to DVCS in (x, Q²) phase
 - \circ Need more samples
- $_{\odot}\,$ I am more interested in actual π^{0} reconstruction to complete this analysis

BackUp Slides

10×100 GeV² Truth VS. Reconstructed: E_{γ}

^{10×100 GeV²} **Truth VS. Reconstructed:** E_{γ} < 1 GeV

10×100 GeV²

Number of Clusters: N_{Cluster}

^{18×275 GeV²} Truth VS. Reconstructed: E_{γ}

18×275 GeV²

Truth VS. Reconstructed: E_{γ} < 1 GeV

18×275 GeV²

Number of Clusters: N_{Cluster}

"NAN" Value in MC Sample

if(\$1 == "P" && \$2 == "2" && index(\$0, "nan") != 0){

ISNAN=1

}

Unphysical values put in to account for "NAN" values in the EpIC MC sample

