Forward ECal desgin and simulations

Zhongling Ji

UCLA California EIC Consortium Collaboration Meeting

February 29, 2024

UCLA

- 1. Overview
- 2. pECal design
- 3. $\pi^0 \rightarrow \gamma \gamma$ separations
- 4. Heavy-flavor jet identifications
- 5. Summary

ePIC detector

Zhongling Ji (UCLA)

pECal simulations

3/14

Forward ECal (pECal) designs

- Sampling ECal:
 - Measure photons and hadrons at the forward region.
 - Good energy resolution $[(10-12)\%/\sqrt{E} \oplus (1-3)\%]$.
- pECal with W/ScFi structure:
 - Beehive with fibers of radius 0.235 mm.
 - Absorber: 97% Tungsten + 3% epoxy.
 - Fiber: 100% polystyrene.

• Radius: $R_{in} = 14$ cm, $R_{out} = 173$ cm.

• η coverage: 1.4 to 4.

High-level input of pECal

- Integration length along z-axis: 30 cm.
- Total weight: ~ 20 tons.
- Number of readout channels: ~ 15 k.
- Readout must work in magnetic field. neutron fluxes up to 10^{12} n/cm².
- Fit in limited space (small X0).
- Hadron compensation with e/h ratio ~ 1 .
- Good π^0/γ separation up to \sim 50 GeV.
- Optimal reconstruction of iets.

Zhongling Ji (UCLA)

Ability to identify heavy-flavor iets.

et Energy [GeV

Acceptance: barrel and endcap overlapping

The green line corresponds to $\eta = 1.4$. For $\eta < 1.4$, the barrel Ecal dominates the resolutions. Only for $\eta > 1.4$, we need the fEcal.

Materials before pECal

Material scan


```
<slice name="Cover_slice" material="Aluminum"/>
<slice name="Air_slice" material="Air"/>
<slice name="PCB_slice" material="Fr4"/>
<slice name="LightGuide_slice" material="Plexiglass"/>
<slice name="Scintillator_slice" material="AvgTungstenScFi"/>
```


Comparison of pECal resolutions

- Full detector: *epic full.xml*
- pECal only: compact/ecal/forward_homogeneous.xml
- With & without Plexiglass & Fr4.

Dynamic range and SiPM size

- Question: Low average energy in pECal ightarrow 50 μm SiPM at low η ?
- Requirement to avoid saturation: Number of SiPM pixels \gtrsim 3 imes Highest light yield.
- Counting of SiPM pixels:
 - Each tower has four $6 \times 6 \text{ mm}^2 \text{ SiPMs}$.
 - 50 μm SiPM has \sim 57k pixels.
 - 15 μm SiPM has ${\sim}638$ k pixels.
- Conclusions:
 - \gtrsim 96k light yield at $\eta \sim$ 1.5 for 100 GeV $\pi^{0}.$
 - Need 15 μm SiPM for all η ranges.
 - CD3A for SiPMs we chose S14160-6015PS as SiPMs for pECal.

DD4hep fiber implementation

- Problem: pECal with fibers uses \sim 6 GB memory in DD4hep and will use more memory when other detectors are included.
- Reason: storing *PlacementPath–VolumeID* mapping in *m_geo.g4Paths* uses large memory.
- Solution: group fibers in each module as a single readout channel.
- Result: reduce memory usage to <700 MB, which is the same as that without fibers.
- Method I: Change DD4hep to let it only store the VolumeID for each module instead of each fiber.
 - Pros: Easy to build fibers.
 - Cons: Need to change DD4hep code.
- Method II: Set the whole module as a sensitive detector and cover the insensitive areas by daughter radiators.
 - Pros: No need to change DD4hep code.
 - Cons: More coding to build the fibers.

$\pi^0 \rightarrow \gamma \gamma$ separations

• Shower profile:
$$\chi^2 = \sum_i \left(\frac{E_i^{meas} - E_i^{pred}}{\sigma_i} \right)^2$$

- EIC YR Fig. 11.46: pECal with granularity \sim 0.008 (2.5×2.5 cm² at z=3m).
- Neural networks input $(\eta = 2)$: 5×5 central tower energies; pECal x and y positions.
- For 60 GeV at $\eta =$ 2, reduced merging prob from 80% to 10%.

Merging prob

Heavy-flavor jet identifications

- Pythia DIS events: $e + p \rightarrow q(jet) + X$, $Q_{min}^2 > 10 \text{ GeV}^2$.
- Jet flavor ID: Only consider the jet closest to the hard-scattered quark q, identify the quark flavor q as the jet flavor.
- Signal: HF jets; Bkg: LF jets.
- N_{LF} : N_{HF} = 169619 : 9685 \approx 17.5 : 1.
- Training: Use LSTM, large weight on signal.
- Best overall performance: Weight signal by factor 15.
- 70% accuracy, 50% efficiency, 10% purity, 4 times bkg rejection.

- The technology choices for all ECals in ePIC were defined.
- Performance of calorimeters were extensively verified with realistic simulations to meet YR requirements.
- Ready to implement fibers for fECal in DD4hep after fixing its geometry.
- Using a neural network improves the $\pi^0 \rightarrow \gamma \gamma$ separation.
- Tracking, pECal, and LFHCAL provide good energy resolutions for the HF jets in the forward direction.
- LSTM gives reasonable performance for heavy-flavor jet identification.
- Including vertex and dRICH PID will give better jet ID in the future.