Design and Performance of Insert-like ZDC

Ryan Milton

California EIC Consortium Collaboration Meeting 02/29/2024

Design

- SiPM-on-tile design, similar to insert
- Steel/Scintillator sampling calorimeter
 - Reuse STAR FCS steel blocks
 - o 64 layers, 2.0/0.3 cm Steel/Sc

ZDC

Scintillator staggering

- Layers cycle through four different scintillator layouts
- Enhances the position resolution
- <u>NIM A 1060 (2024) 169044</u>

Simulation & procedure

- Goal: To measure angle and energy of neutrons at small angles, η>6
- Standalone simulation of ZDC (no LYSO Ecal)
- Investigate energy and angular resolutions in neutron events

 10 < E < 300 GeV, 0 < θ < 0.5
- Employ graph neural networks (GNNs) for regression on E, θ

1D Model schematic

- Model in previous paper outputs E_{gen}
 - o arXiv:2310.04442
- Provide model with cell (E, x, y, z), event energy, and info of neighboring cells

2D Model schematic

Energy resolution

- GNN significantly improves
 energy resolution
- Strawman is simple sum of cell energies
- Outperforms CALICE beamtest results

Angular resolution

- Defined as the sigma of a Gaussian fit of Δr = r_{reco} - r_{truth}
- See improvements with staggered design
- HEXPLIT & GNNs improve even further
 - HEXPLIT is a reweighting procedure detailed in <u>NIM A 106</u> (2024) 169044

π^0/γ separation

- ZDC granularity must be capable of distinguishing π^0 and γ in u-channel backward reactions
- Implement particle type classification into GNN

Event = 1000, $E_{Truth} = 145 \text{ GeV}$, $\theta_{Truth} = 2.9 \text{ [mrad]}$

Amended Model schematic

Classification strategy

- Loss = $\alpha^* L_{\text{regression}} + (1-\alpha)^* L_{\text{classification}}$ • $\alpha = 0.75$
 - $L_{regression} = MAE, L_{classification} = Binary cross entropy$
- Model gives probability event is π⁰
 - If model output is > 0.3, call it π^0 , otherwise γ

Classification efficiency

- Fraction of photon & π⁰ events classified as photons
- Performs similarly to a simple cut on shower width
- Bottleneck of whether both π⁰ decay photons reach the ZDC

Regression results

Summary & Future work

- ZDC is a novel design that is enhanced with machine learning
- Future work:
 - \circ Investigate impact of α on results
 - $\circ~$ Extend regression to include Φ
 - Include neutrons in classification
 - $\circ \quad Studies \text{ of } \Lambda \rightarrow n + \pi^0 \rightarrow n + \gamma + \gamma$

Design of a SiPM-on-Tile ZDC for the future EIC, and Its Performance with Graph Neural Networks

Ryan Milton^a, Sebouh J. Paul^a, Barak Schmookler^a, Miguel Arratia^{a,b}, Piyush Karande^d, Aaron Angerami^c, Fernando Torales Acosta^e, Benjamin Nachman^{e,f}

Backup

Fe/Sc π 0 rejection

- π0 in u-backward channel lead to two backgrounds: reducible: 2 ¥ hit ZDC. "irreducible": 1 ¥ hit ZDC. <u>See Zach's paper for details</u>. Estimating rejection power based on simple shower shape analysis and GNN

Preliminary performance plots for $\gamma/\pi 0$ identification

Single photon peak well separated from diphoton distribution.

The single photon peak in pi0 (other photon missing ZDC acceptance) is "irreducible" with shower shape only

Demonstration of low energy predictions

- 152 GeV 21 GeV Incident particle Incident particle π0 π^0 Epred(GeV) E_{pred}(GeV)
- Model is struggling to get the correct energy for π^0 at low energies