Simulation Study of the Gen-II CALI prototype

Weibin Zhang

UC Riverside

2024-03-01

Gen-II Prototype

- Beam test of Gen-I prototype in Hall D at JLab on Jan 23, 2023 Instruments 2023, 7(4), 43
- 40 channels in Gen-I prototype
- 300 channels in Gen-II prototype
- 4 hexagonal layers + 10 square layers

Test Position

- \gtrsim 7 m away from the IP
- North of the beampipe, \sim 47 cm away from the beampipe center (3.2 < η < 3.6)
- Roughly alighted in height
- Be parallel to the beampipe³

Simulation

- DD4HEP framework
- 7 layers of hexagonal cell (7.9 cm²), 13 layers of square cell (22.5 cm²)
- 7 m away from the beam source, 0 $< \theta < 0.001$
- Hepmc3 file for π^0 events, making sure the 2 photons hit the prototype

Event Display: 40 GeV Photon

Sampling Fraction

• sf = 0.01

Event Energy

• sf is energy dependent

Hit Energy Distribution

hit energy (GeV)

Layer Energy Distribution

Reconstruction: Eicrecon

Cluster

π^0 : Photon Distributions

- The larger the opening angle, the larger the energy difference
- The lower energy photon can go to very low energy
- The higher the π^0 energy, the smaller the minimum opening angle, the harder to distinguish the decay photons

Event Display: 40 GeV π^0

π^0 : Number of Clusters

π^0 : Cluster Energy

π^0 : Invariant Mass

16

Summary

- Simulation of high energy photon and π^0 with the Gen-II prototype
- Cluster reconstruction with the ImagingTopological algorithm
- Reconstruct the π^0 events
- Next step: update the prototype and simulate the real beam conditions

Backup

Invariant Mass

$$m = \sqrt{(e_1 + e_2)^2 - \sum_{i=x,y,z} \left(e_1 \frac{\dot{i}_1}{l_1} + e_2 \frac{\dot{i}_2}{l_2}\right)^2}$$

Seperating Clusters In Square Cells

- Need a thin cluster: high minClusterHitEdep
- A large seperation between the two decayed photons

Seperating Clusters

- Hexagon side: s = 1.74 cm
- Seperation length: $dx = 6 \times s = 10.44$ cm