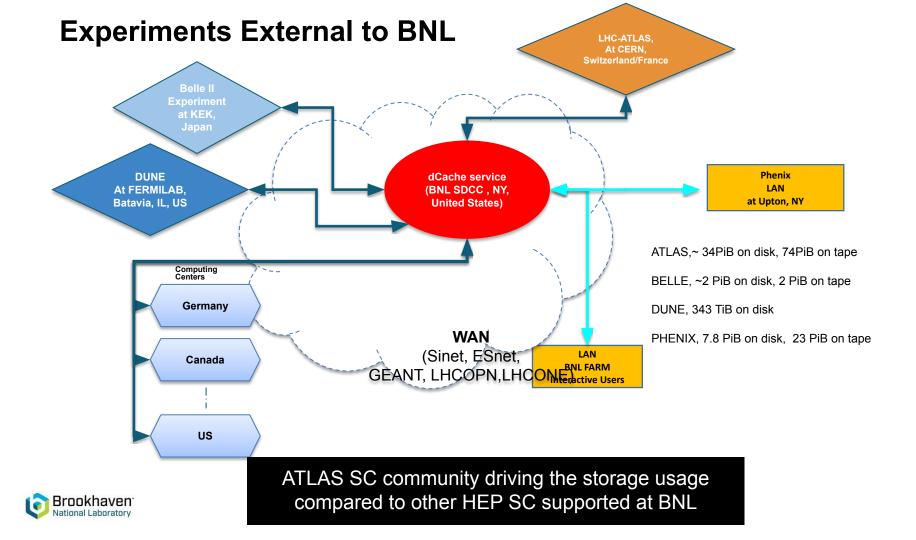


dCache at BNL

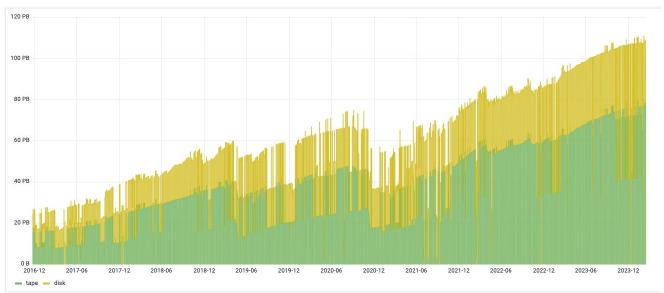
Carlos Fernando Gamboa (on behalf of the storage group) Brookhaven National Laboratory

Workshop on ATLAS Computing and Software Activities at BNL - Navigating Distributed @BrookhavenLab Computing, Storage, Compute, and Beyond

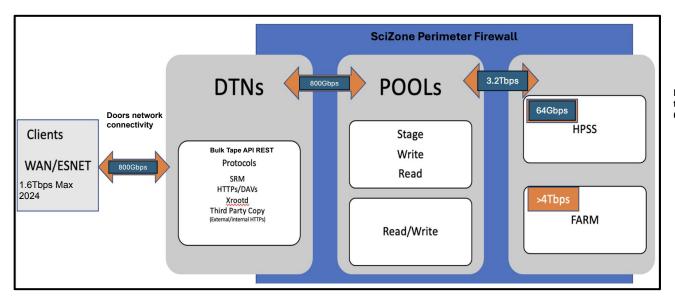
Outline


- Overview to dCache based storage services
- Toward an improved dCache service
- Challenges and future work

Storage Services at BNL SDCC


- BNL SDCC supports different storage services for a variety of Scientific Communities (SC) like NSLSII, Nuclear and High Energy Physics
- Diverse storage technologies are used to support the communities: dCache, Lustre and GPFS, please see past HEPIX 2023 BNL site report for specifics
- This talk will concentrate on dCache storage technology
 - o dCache services for LHC-ATLAS, BELLE2, DUNE and Phenix SC store and manage 143PiBs (30% DISK) of data
 - Scientific Community data is produced outside BNL:
 - CERN (Switzerland/France),
 - KEK (Japan),
 - Fermilab(IL,US)
 - SC producing data at BNL

Evolution of Atlas SC storage

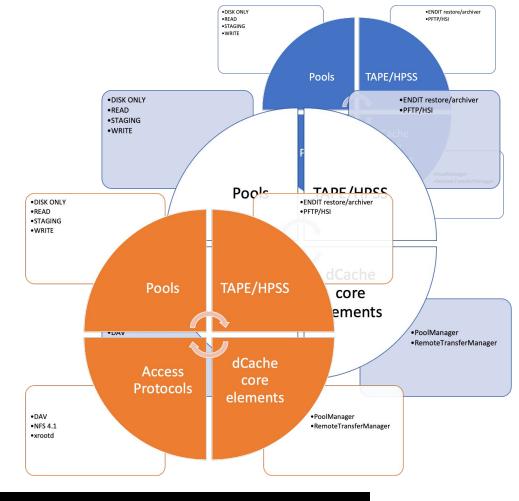

BNL provides more than 100PB for ATLAS

The main challenge coming is HL-LHC and with the simple model of 3 to 4 order of magnitude increase in 10 years from now: 1B files, 700 PB, 300Mhz, 5-7PB/day

dCache General Layout (ATLAS) dCache.org 1

HPSS architected to support up to 64Gbps sustained

Comply with BNL cybersecurity policy disaggregation among external and internal resource accessibility


Reference deployment to be used as building block for other SC

dCache instances are isolated per SC

- SC diverge in their requirements
- Procurement and resource control
- Infrastructure supported on physical and virtual Machines

Towards an Improved dCache Operation

Areas of work:

- dCache SE multi-instance architecture
- Evolving dCache along with infrastructure
- Improving dCache data access workflows for client access
- Extending monitoring for dCache operations
- Adoption of ENDIT
 - (tomorrow's session detailed overview)

Towards dCache SE multi-instance architecture

- Improving dCache SE components distribution
 - Reconfiguration in HA mode to "minimize single points of failures and enable rolling upgrades and, in some cases, horizontal scalability", cf. <u>HA dCache Services</u>

7/01				
CellName	DomainName	RP	TH	Ping
PnfsManager	dccore01Domain		51	14 msec
PnfsManager	dccore02Domain dccore01Domain dccore02Domain		47	17 msec
PnfsManager			47	15 msec
PoolManager			125	15 msec
PoolManager			119	17 msec
PoolManager	dccore03Domain	0	120	16 msec

- Refactoring puppet code for dCache administration
 - SDCC puppet transition infrastructure evolving from puppet 3 to puppet 8
 - dCache related puppet modules in principle ported to puppet 8
 - New effort in refactoring dCache puppet classes for a multi-instance deployment
 - Common puppet class to manage all experiments

0

Improving dCache data access workflows for client access

- Tailor dCache data access workflows for LAN client access
 - Production workflows optimization for local resource access
 - BNL to BNL TPC
 - BNL to BNL TPC via p2p?
 - Different scenarios being considered to improve DAVs-TPC will be discussed today
- Xrootd external client access for direct write/read

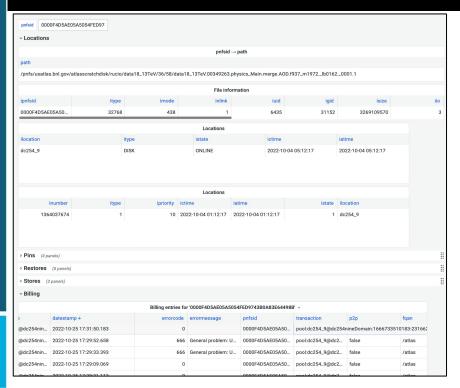
Xrootd-dcdoor21-external	xrootd-dcdoor21Domain		
Xrootd-dcdoor21-externalipv6	xrootd-dcdoor21Domain		
Xrootd-dcdoor21-internal	xrootd-dcdoor21Domain		
Xrootd-dcdoor21-internalipv6	xrootd-dcdoor21Domain		

• Dual IPv4/IPv6 dCache application stack configuration

WebDAV-dcdoor21-external	webdav-dcdoor21_httpsDomain
WebDAV-dcdoor21-externalipv6	webdav-dcdoor21_httpsDomain
WebDAV-dcdoor21-internal	webdav-dcdoor21_httpsDomain
WebDAV-dcdoor21-internalipv6	webdav-dcdoor21_httpsDomain

Evolving dCache Along with Infrastructure

- SDCC puppet transition infrastructure evolving from puppet 3 to puppet 8
- RHEL 7 ~ 6 moths for end standard support, new hardware deployment on RHEL
- Adopting underlying ZFS to be underlying file system to host dCache data on pools

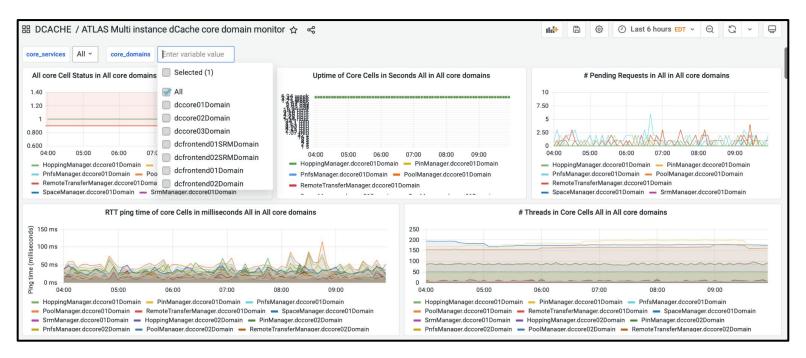

	dCache instance	Number of VMs+Physical Hardware(PH)	OS RELEASE	dCache Version	Notes	
	ATLAS	87(95%PH)	RHEL 8.8 / Pools (7.9)	9.2.6+	24/56 pools servers to be decommissioned ~22 PiB data storage to be relocated (ongoing)	
	BELLE2	12(100%PH)	RHEL 8.6 (Core services), Pools (7.8)	8.2.26	Subject to a yearly schedule upgrades, mainly taking advantage of detector downtime	
	DUNE	12(33%PH)	RHEL 7.9	9.2.6	Legacy hardware in a resilient configuration 2 copy/file	
	Phenix	14 (100%PH)	RHEL 7.9	5.2.9	Recently moving to a centralized storage, decommissioning >400 pools on Farm nodes	
	Pre-production Brookhaven ⁻ National Laboratory	12(20%PH)	RHEL 8/Pools (7.8)	9.2.14	WLCG REST API test endpoint Integrated with ATLAS DDM test infrastructure 11	

Monitoring Enhancement

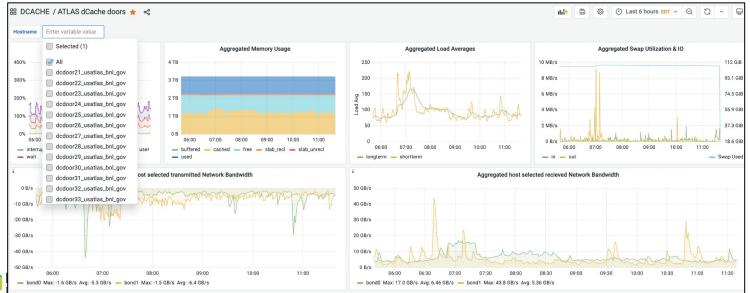
Grafana based monitor using the dCache billing/chimera/srm databases to provide information

use in operations


Allows aggregate information from different dCache events by entering the PNFSID (dCache file ID)

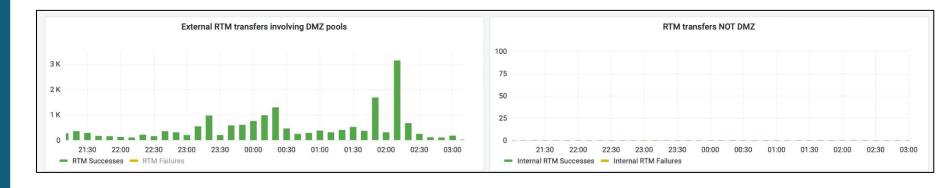

Feature driven dashboards

Performance of dCache



Evolving monitoring to a multi-core architecture (on going)

Monitoring Enhancement, Extending Grafana based metrics


Rhel 7 based used Ganglia to monitor OS out of box aggregations RHEL 8 based uses Grafana, custom based

Monitoring Used in ad-hoc Studies:

Allowed us to identify areas of improvement for dCache resource access

Internal (LAN) HTTP based TPC should not use DMZ pools resources

Future Work

- Consolidation of software stack on dCache migration to 9.2.X releases across instances
- Hardware refresh ATLAS/Belle2 pools

Hardware refresh cycle for pools→ RHEL 8.2 → Puppet 8
Refactorization puppet code for a multi instance dCache deployment

Belle, Dune...

Data migration

- Transition from JAVA 11 to JAVA 17
- Identify scenarios to improve TPC workflows

In Summary

BNL SDCC is successfully supporting dCache based storage for a diverse of SC

Evolution of the dCache storage features adapted to SC

Thank you

Backup slides

Non Firewalled Xrootd Client Access for Write/Read

Standard xrootd client transfers involve pool redirections among client and dCache service

Accessibility to clients outside BNL to pools is not permitted

Support for xrootd in proxy mode released on dCache 8.2.2

- Proactive functional test work along dCache Developers (Al Rossi et al.)
- First enabled on DUNE dCache to READ/WRITE via xrootd
- Later on successfully integrated on ATLAS dCache instance (8.2.15)
 - Xrootd standalone servers used to front dCache xrootd to provide xrootd external READ (ATLAS) decommissioned

ATLAS DUAL IPv4/IPv6 dCache Stack Configuration

dCache upgrade (8.2.15) permitted to:

- Utilize dual-stack network infrastructure deployed on different components (doors, core, and pools)
- Configure the dCache stack to be able to support client requests on IPv6 and IPv4 in dual networks:
 - dCache doors configured to support different client accessibility
 - Clients internal to BNL LAN supporting only IPv4 or IPv6 (no proxy access)
 - Clients external to BNL proxied access for IPv6 and IPv4
 - The use IPv6 when transferring data between two dual-stack machines for HTTP-TPC transfers

Improving Software to Interact with dCache and TAPE

ENDIT archiver/retriever

- Previous mechanisms used to instantiate restores from HPSS relied heavily on polling the dCache Poolmanager
- Stability of Poolmanager component at risk when > 100k concurrent requested restores
- Since ENDIT retriever adoption, no more Poolmanager stability issues were observed, more than 140k concurrent restore requests without any issue
- Successful adoption of ENDIT retriever permitted the extension of usability for writing interactions to HPSS
 - Allowed consolidate legacy software/code for writing to HPSS

Extended overview covered in tomorrow's session