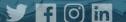


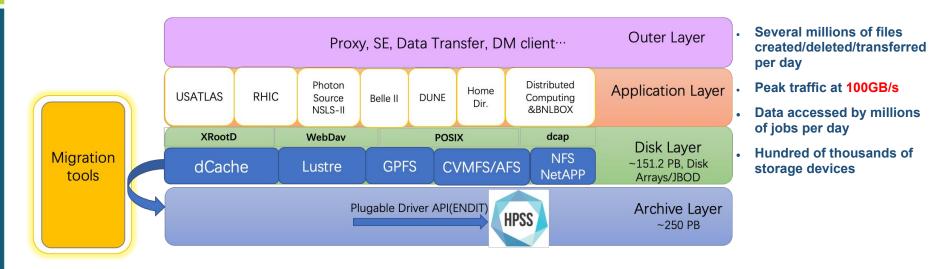
Al-based Data Popularity, Placement Optimization for a Tiered Storage architecture at BNL/SDCC Facility

Qiulan Huang, James Leonardi, Vincent Garonne, Carlos Deleon, Shinjae Yoo

Brookhaven National Laboratory



Storage Overview at BNL/SDCC

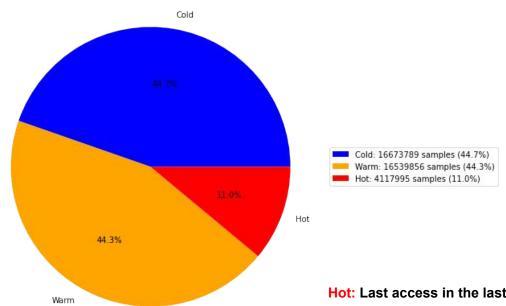


Tiered Storage

- Encompasses various storage technologies to serve different workloads and use cases (HPC posix access, HTC grid access, ...)
- Involve different generations of storage over a period

Data Temperature (Take ATLAS data for example)

Jan 1, 2023-Dec 31, 2023, ~37 million files



Hot: Last access in the last month

Warm: Last access in the last 6 months

Cold: Last access between 6 months and one year

AI/ML For Storage Optimization

Motivation

- In the current tiered storage "class" system at the Data Center
 - Unused data is stored on expensive storage
 - Fast IO storage is not currently used effectively

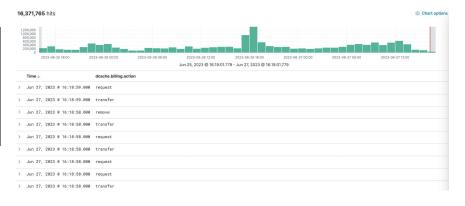
Goals

- Design an efficient monitoring platform to collect the relevant information from various distributed data sources
- Develop an optimal data management system for the data center to maximize usable space while minimizing access latency, within budget, hardware, and compliance constraints
 - Heavy use of storage, metadata and data popularity information
 - Develop a precise AI/ML prediction model to possibly forecast the future usage of the data
 - Orchestration of data for optimal movement and placement

Data collection

- Has collected data of the past 2 years
 - Data volume: ~11TB
 - ~10GB in average per day, 5~8 million events per day
 - Data source: billing logs, domain logs, etc from various experiments like usatlas, Belle2, etc

Time: one day	size	records
Raw data	13GB	5,604,498
Preprocessed data	2.7GB	5,604,498



Data preprocessing

- Define and generate the tabular data or comma-separated values (CSV) file format for data training and facilitates finding patterns between files
 - o pnfsid
 - Access Count
 - Access Timestamps
 - Rucio Scope (mc15_13TeV)
 - o Task ID
 - Datatype (DAOD, EVNT, HIST, etc.)
 - Avg Time Between Accesses
 - Action(create, transfer, delete,)
 - User ID
 - 0 ...

File ID	path	taskid	datatype	scope	First_Access	Last_Access	
file_1							
file_2							

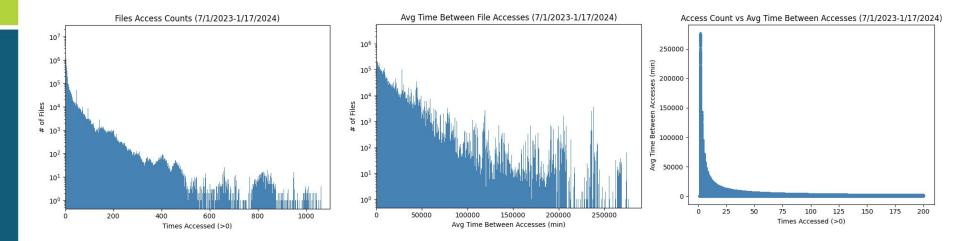
00008583BBF8DD8A4B0787679565564E2794|/pnfs/usatlas.bnl.gov/BNLT0D1/rucio/mc23_13p6TeV/1e/d6/DA0D_PHYSLITE.35040159._000342.pool.root.1|35040159|DA0D_PHYSLITE|mc23_13p6TeV|1|{'130.199.206.149'}|{'xrcotd-5.0'}|{'request'}|2023-11-01 00:00:05.428000-0400|{'2023-11-01 00:00:05.428000-0400|0|0|0|{'0'}}
000058B7CD9318E44138857679E39F0E5B17|/pnfs/usatlas.bnl.gov/BNLT0D1/rucio/mc23_13p6TeV/a4/60/DA0D_PHYSLITE.35040159._000330.pool.root.1|35040159|DA0D_PHYSLITE|mc23_13p6TeV|1|{'130.199.156.199'}|{'xrcotd-5.0'}|{'xrcotd-

00td-5.0'}['request']2023-11-01 00:00:06.400000-0400[]2023-11-01 00:00:06.400000-0400[]0[0][0][0][0][0]

 $000058BC8CE6F325496B982EF0ABF2B2AF05]/pnfs/usatlas.bnl.gov/BNLT0D1/rucio/mc23_13p6TeV/7d/9c/DAOD_PHYSLITE_35040159_000253.pool.root.1|35040159|DAOD_PHYSLITE|mc23_13p6TeV|1|{'130.199.159.140'}|{'xrcotd-5.0'}|{'request'}|2023-11-01 00:00:06.777000-0400|{'2023-11-01 00:00:06.777000-0400|0|0|0|{'0'}}$

 $0000223C108F5ED14EB59CAA13263B97E30F]/pnfs/usatlas.bnl.gov/BNLT0D1/rucio/mc20_13TeV/01/97/AOD.35261114.000644.pool.root.1|35261114|AOD|mc20_13TeV|2|{'130.199.206.204'}|{'Xrootd-5.0'}|{'request'}|26-11-01-00:00:07.714000-0400|{'2023-11-01-00:00:07.714000-0400|}.043|0.043|0.043|0.043|0.043|{'0'}}$

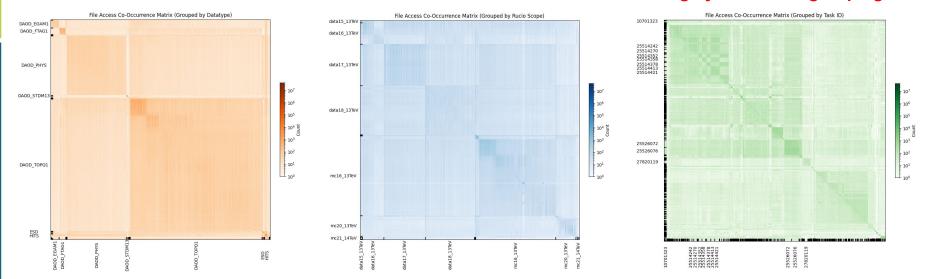
Data Analysis-Access Distribution



- Access count tends to taper off (some exceptions)
- As files are accessed more, time between accesses tends to decrease
- Rightmost plot trimmed to show patterns

The Data Co-occurrence Matrix

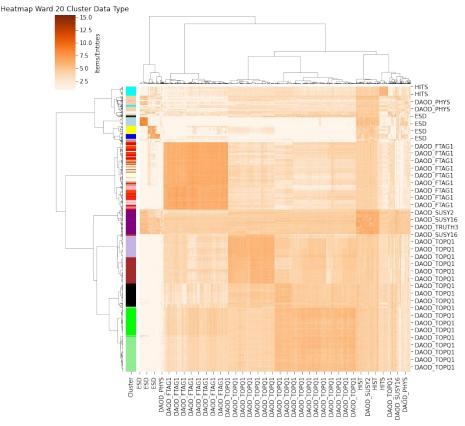
Group by any desired attribute: Task ID, Rucio Scope, Datatype, etc. Patterns appear along diagonal Denote highly correlated groupings



- Visualize how files are accessed with each other based on some attributes
- Strong patterns mean the attributes can be used for prediction/training
- Focus on highly-accessed files for analysis (150+ access times, 90K files)
 - The matrix size reduce from 23 million×23 million to 90K×90K

Data Analysis- Clustering

- Perform unsupervised learning
- Explore the patterns that help to differentiate the data
- A clear pattern in data type shown in the matrix correlation as well as the dendrogram hierarchical clustering and the K-means clustering
- All 3 clustering methods show a pattern is connected to the datatype feature



Data Training

- Data samples: 6 months data (~23 million files)
- **Features**:hold patterns that were shown in previous slide ['taskid', 'datatype', 'scope', 'accesscount', 'avgtimebetween']
- Feature importance

taskid features: 0.4534

datatype features: 0.2193

avgtimebetween features: 0.1404

accesscount features: 0.1066

scope features: 0.0803

Sum of importances for features: 1.0000

→ The features we used to train our model all impact the model differently. Some of our features impact the model more than others. The % of each feature tells us how much of an impact it is to the decision tree when determining the classification

Prediction Model and Results

Model Architecture:

- Input of the model: one-hot encoding of the Categorical columns
- Output of the model: hot/warm/cold classification

Model Training:

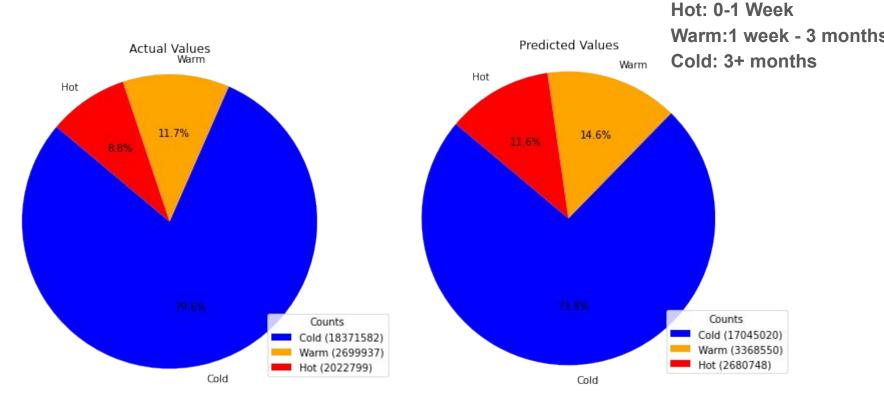
- Features: ['taskid', 'datatype', 'scope', 'accesscount', 'avgtimebetween']
- Labeled data temperature based on the last accessed file which we removed from the training
- Randomly selected 60k samples to use for model training
 - 20k samples for each Hot, Warm, Cold 12k for validation(4k each type) and 48k for training

Results(More details see the the backup slides 19-23):

- The model's performance is evaluated on the different sets to assess its predictive accuracy, precision, and recall
- With the larger dataset, the accuracy improves, highlighting the benefits of increased training data
- Precision improves with the more even # of each type(hot/warm/cold)

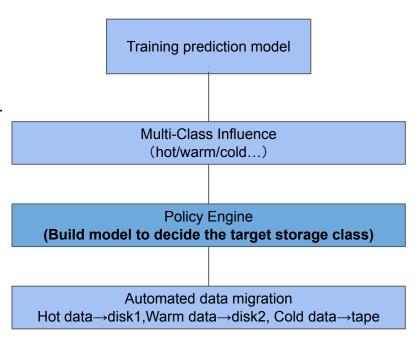
	Set 1 (Initial 60K)	Set 2 (Top 300K)	Set 3 (Total 23M)	Set 4 (Random 1.5M)	Set 5 (Random 1.5M, Even # of each type)
Accuracy	91.68%	90.70%	91.81%	90.40%	90.86%
Recall	91.66%	92.00%	91.33%	91.66%	91.00%
Precision	91.66%	82.33%	80.33%	74.33%	91.33%

Labeled vs Prediction popularity (6-month)



Policy engine

- The objective is to propose and evaluate data migration strategies for optimizing data storage
- The input data output(y)=input(x), y contains {hot, warm, cold}
- Build a model to decide the target storage class for data migration
 - Metrics: user response time, load, CPU, disk space,etc
 - Define different weights for the metrics, like W¹,W²,W³,W⁴...W^N, W¹+W²+W³+W⁴+...+W^N=1



Conclusion

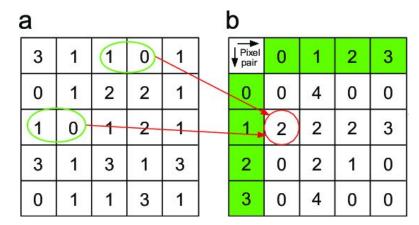
- The exploratory data analysis provides useful patterns for data training
- The accuracy of prediction is up to 91.81%
- The policy engine is designed to optimize the data storage based on the predicted data popularity
- Next steps
 - Policy engine will be tested against current storage
 - Testing model for degradation of accuracy over time
 - XGBoost hyperparameter optimization, allows more customizability for the data
 - Training more data with new labels, like 1 month hot, 1-6 month warm, 6+ month cold, etc
 - Talk with ATLAS physicists for insights to improve the model further
 - Focus on DAOD files; dataset granularity

Thank you!

Backup

Exploring Data Correlation

- Since we predict the data popularity in the future, it will be useful to know which files are accessed with each other
 - If one file is accessed, this can push other files to become 'hot' as well.
 - Goal: Generate a Co-Occurrence Matrix
 - Visualize which files are accessed with each other.
 - For figure on right
 - Each number represents a different file
 - Put all files along each axis
 - Count how many times 1 followed by 0



Example of co-occurrence matrix.

Source: https://www.researchgate.net/figure/Gray-level-co-occurrence-matrix -calculation-example-For-interpretation-of-the fig5 273731213

20 Clusters

Prediction model and results

Model training: 60K

Accuracy: 0.91683333333333333

Classification Report:

	precision	recall	f1-score	support	Confusion Matrix:
	•				[[3660 306 48] 0
Cold 0	0.93	0.91	0.92	4014	[244 3525 194] 1
Warm 1	0.88	0.89	0.89	3963	[52 154 3817]] 2
Hot 2	0.94	0.95	0.94	4023	0 1 2
accuracy			0.92	12000	
macro avg	0.92	0.92	0.92	12000	
weighted avo	0.92	0.92	0.92	12000	

Prediction model and results (cont.)

Top 300,000 access count

Accuracy: 0.9070202901840102							
Classification	Report:				Counts Percentage		
	precision	recall	f1-score	support	1 244456 0.815933 2 34598 0.115479		
Cold 0	0.88	0.87	0.88	20549	0 20549 0.068587		
Warm 1	0.99	0.90	0.94	244456			
Hot 2	0.60	0.99	0.75	34598	Confusion Matrix: [[17920 2585 44]		
Accuracy			0.91	299603	[2347 219523 22586]		
macro avg	0.82	0.92	0.86	299603	[54 241 34303]]		
weighted avg	0.94	0.91	0.91	299603			

Prediction model and results (cont.)

Random 1,500,000

Accuracy: 0.9040399862300489 Counts Percentage Classification Report: 0 842949 0.562372 precision recall f1-score support 1 630126 0.420388 2 25841 0.017240 0.95842949 0 0.91 0.930.90 0.89 0.89 630126 Confusion Matrix: 2 0.38 0.95 0.54 25841 [[770981 60067 11901] [41767 559450 28909] 249 943 24649]] 0.90 1498916 accuracy 0.79 1498916 macro avg 0.74 0.92 weighted avg 0.92 0.90 0.91 1498916

Prediction model and results (cont.)

Random 1,500,000(Even # of each type)

Accuracy: 0.90868

Classification Report:

	precision	recall	f1-score	support
0	0.94	0.96	0.95	500000
1	0.84	0.93	0.88	500000
2	0.96	0.84	0.89	500000

Confusion Matrix:

[[481229 14049 4722]

[23935 464196 11869]

[8663 73742 417595]]

accuracy 0.91 1500000 macro avg 0.91 0.91 0.91 1500000 weighted avg 0.91 0.91 0.91 1500000

Prediction model and results

Total 6 months data: 23M

Accuracy: 0.9181894871283923

Classification Report:

	precision	recall	f1-sco	re support
0	0.99	0.92	0.95	18371582
1	0.73	0.91	0.81	2699937
2	0.69	0.91	0.79	2022799

Confusion Matrix:

[[16903744 787431 680407]

92564 2454124 153249]

[48712 126995 1847092]]

accuracy 0.92 23094318 macro avg 0.80 0.91 0.85 23094318 weighted avg 0.93 0.92 0.92 23094318