QCD in space: guark matter with loop calculations

Saga Säppi (she/her) 6.2.2024 Technical University of Munich Brooklyn National Laboratory

neutron stars with QCD

Quiescent neutron stars

neutron stars are celestial labs for dense (= lots of baryons in a small volume) strongly interacting matter

Cooling neutron star [Nasa, PD]

far denser than terrestrial labs and running all the time classic observations like Mass, Radius from calm NSs

Path to new physics

Equation of State \rightarrow Equations of Motion \rightarrow Mass–Radius curve

Path to new physics

Equation of State \rightarrow Equations of Motion \rightarrow Mass–Radius curve

One Day: Discrepancy! New Physics!!

Neutron star mergers

novel approach: neutron star mergers and gravitational waves

Merger simulation [Nasa, PD] new observations: transport phenomena, tidal deformability, ...

Asymptotic Freedom

determining the $EoS \leftrightarrow$ determining the pressure

in colliders, at finite temperature, simulating QFT on computers with lattice field theory works

finite density makes the action S complex \rightarrow sign problem (e^{-S} is no longer a posdef probability distribution for Monte Carlo)

pQCD solutions (?)

goal: try to improve pQCD to get closer to NS cores to improve things on the denser side. requires very high precision, but gives unique and valuable insight to dense QCD:

- few other first-principles methods—at low densities effective nuclear / hadronic methods work great
- theoretically 'clean'—No fundamental obstacles, just difficult calculations
- and those calculations are fun—Lots of diagrams to draw and methods to use to compute loops: much more to understand vs vacuum (or even T > 0)

finite-density pQCD
(aka: I like diagrammatics)

Basic formalism

finite density $n \leftrightarrow$ finite chemical potential μ : 'Excess of stuff' in momentum space: $p_0 \rightarrow p_0 - i\mu_f$ for every quark flavour f

- complexifies integrands
- breaks Lorentz-invariance
- gives scales: μ_f an inherent property of the surrounding medium

(very similar to T>0: $p_0 \rightarrow 2n\pi Tn$ or $(2n+1)\pi Tn$ for $n \in \mathbb{Z}$)

understanding diagrammatics helps understanding physics

QCD fields and pressure

three basic lines and four basic vertices in QCD:

Feynman rules connect them to maths: more loops \sim more integrals pressure (free energy, EoS): 'In Z is the sum of all connected bubble diagrams', truncating to a given order gives a Taylor coefficients in coupling g_s

First two orders

first order is just simple loop (no interactions: free bosons and fermions)

at second order you also get vertices (QFT effects included now!)

these are \sim as easy to compute as they are to draw integrals need a scale : only the graphs with quark lines carrying μ survive

Soft physics

particles interact with a thermal medium, especially low-energy (soft) gluons screened by all the dense stuff around them:

ESTCube / M. F. Palos, A. Maskava & R. M. Jansone [CC-BY 4.0]

diagrammatically: arbitrarily many loop insertions contribute at the same order for soft physics \rightarrow combine them into a resummed line

Hard Thermal Loops

treat the soft gluons as extra lines and vertices with a screening mass $\propto \mu$: soft gluons and soft gluon vertices

framework with 'Hard Thermal Loops' [Braaten–Pisarski NPB 337 (1990)], simplified description valid only for soft physics

these 'lag behind' in a perturbative expansion: will not show up until the third order—but just keep drawing bubbles with these extra lines and keep track of when they show up

Third order and the ring sum

3-loop diagrams are manageable (only quark diagrams shown):

the first soft gluons show up: the soft gluon loop hides infinitely many diagrams inside it

physically the pressure of a screened gluon

classic result [Freedman–McLerran, PRD 16 (1977)] with the rest of third order contributions

Fourth order and sectors

keep repeating the exercise—now three classes of diagrams: Soft , with just soft lines, Mixed , with soft and hard lines, Hard , with just hard lines

Soft sector

these are the same two-loop diagrams, but with soft lines (finite-density HTL is just for gluons, ghosts are needed for gauge invariance)

two-loop order screened pressure: how screened fields interact with other screened fields

[PRL 121 (2018) for one Taylor coefficient, PRL 104 & PRD 127 (both 2021) for the rest of the graphs, first in collab w/ Gorda, Kurkela, Romatschke, Vuorinen, last two -Romatschke +Paatelainen]

Mixed sector

one soft line connected to a hard graph

these are a bit unusual—there are contributions from all orders, and the ghost one already showed up before, just with soft momenta

they are corrections to the ring sum from the hard particles: how screened particles interact with hard particles

 $[2 \times PRD 107 \text{ w}/\text{ Gorda}, \text{Kurkela}, Österman, Paatelainen, Philipp Schicho, Seppänen, Vuorinen for QED, PRL 131 & JHEP 08 w/ Gorda, Paatelainen, Seppänen for QCD, all 2023]$

Hard sector

easy to conceptualise, hard to calculate...

...and these are only the graphs without resummed counterparts!

Results

if you actually evaluate all of the above

$$p \approx \frac{3}{4\pi^2} \left(\frac{\mu_B}{3}\right)^4 \left\{ 1 - 2\frac{\alpha_s}{\pi} - 3\left(\frac{\alpha_s}{\pi}\right)^2 \left[\ln\left(3\frac{\alpha_s}{\pi}\right) + 3\ln X + 5.0 \right] + \left(\frac{\alpha_s}{\pi}\right)^3 \left[\frac{11}{12}\ln^2\left(3\frac{\alpha_s}{\pi}\right) - (-6.6 + 3\ln X)\ln\left(3\frac{\alpha_s}{\pi}\right) + 5.1 - 18.\ln X - \frac{9}{2} + \frac{2}{3}c_0 \right] \right\} + O(\alpha_s^4)$$

this provides constraints to the behaviour of deconfined dense matter and NS cores, and tells us a part of the theory story about our stellar labs

[Gorda, Komoltsev, Kurkela, Astrophys.J. 950 (2023), cropped] thanks for the attention, have a space jellyfish. (B0355 by Chandra [Nasa, PD])

X-RAY & IR

