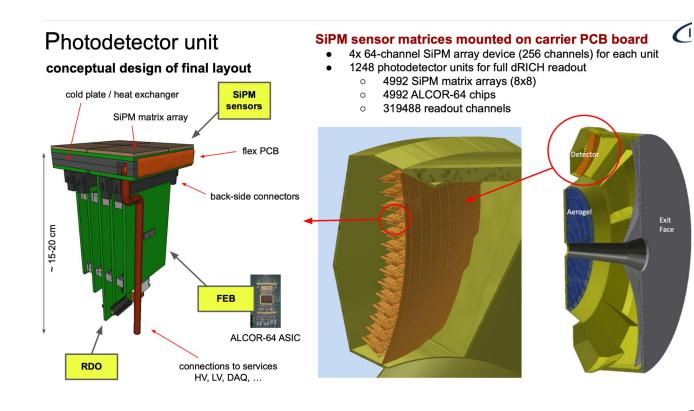
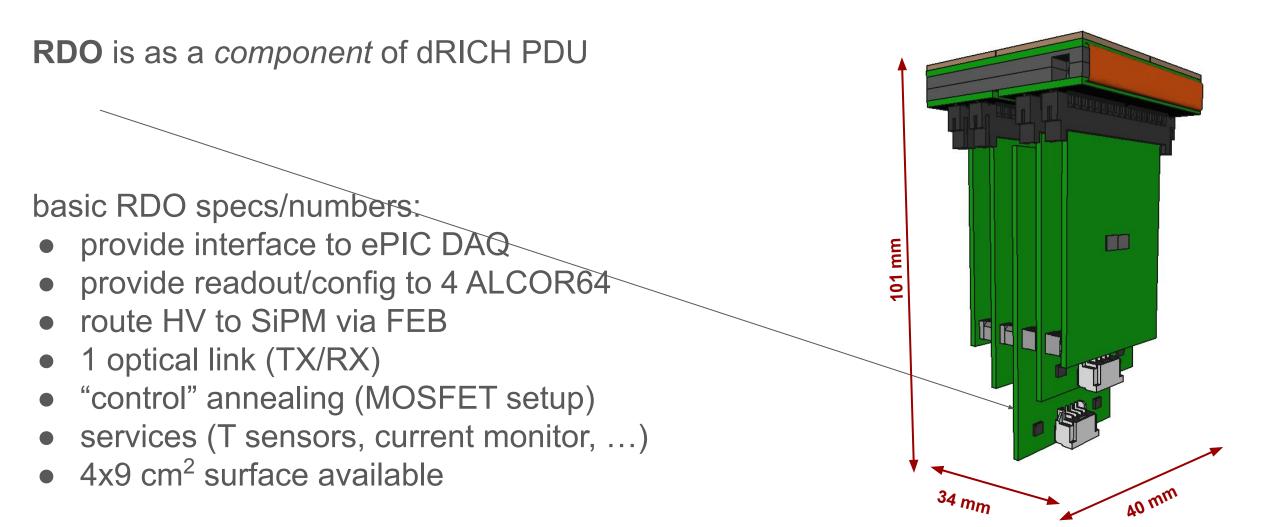


dRICH DAQ Short summary for SRO meeting

<u>P. Antonioli</u> for the dRICH DSC, INFN Bologna

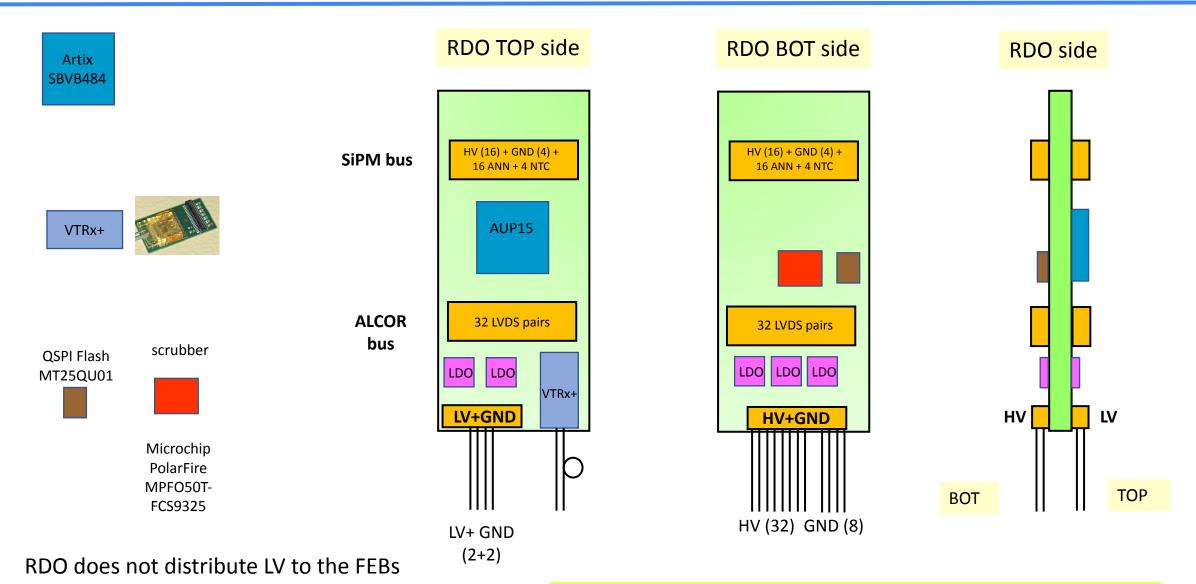

Reference: DAQ update at dRICH meeting was last 15 Nov

Outline


- Brief dRICH RDO overview in dRICH PDU
- Baseline RDO design
- DAQ throughput modelling

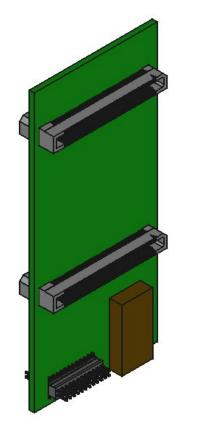
Trying to give some additional input/info following discussions @ANL

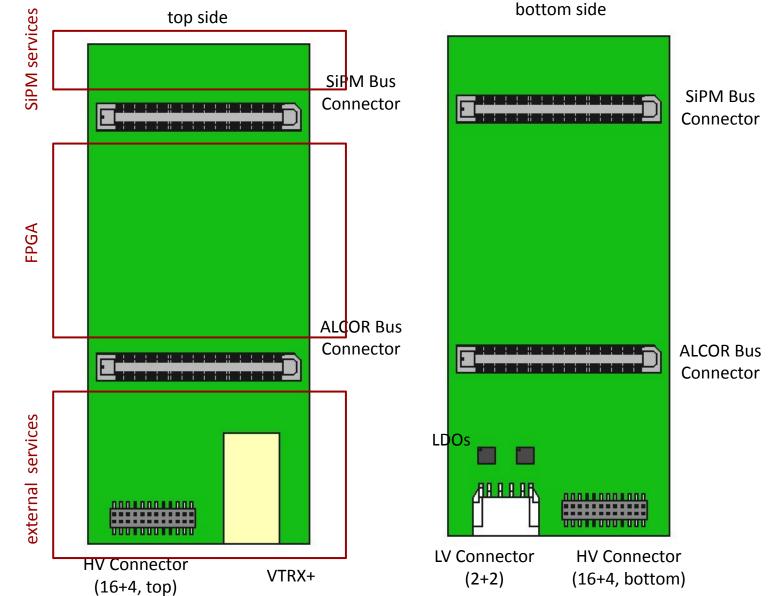
dRICH RDO Overview



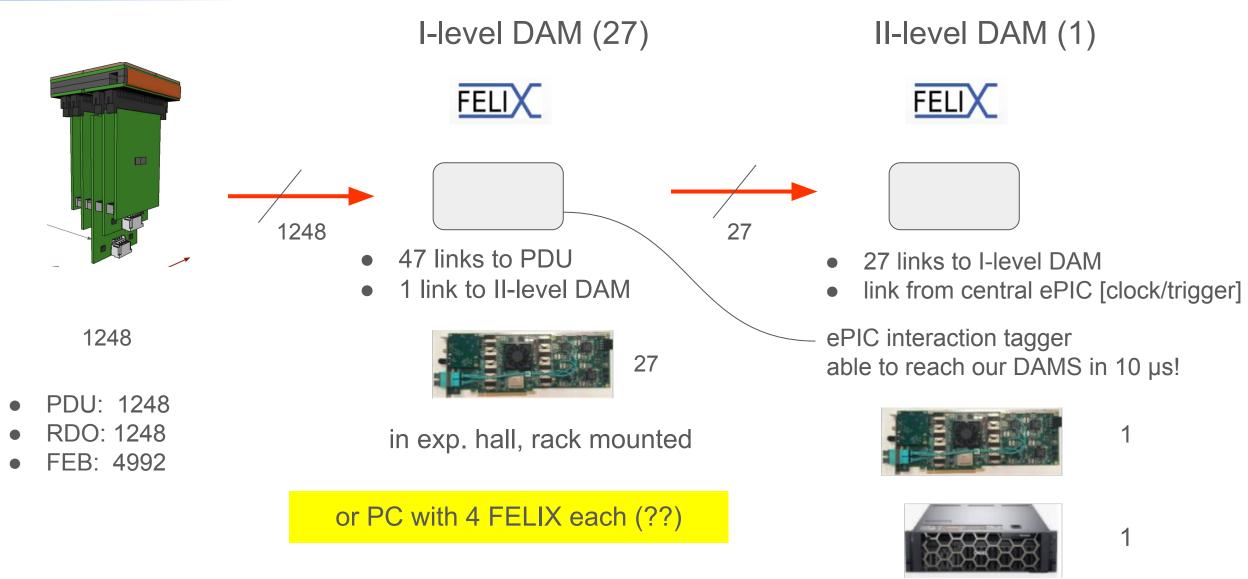
Need of high integration with challenging space constraints→ "custom" RDO

RDO Baseline (I)


4


components on scale excluding connectors

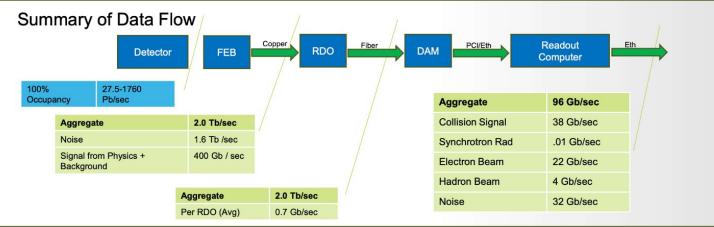
RDO baseline (II)


- 14-16 layers min
- HV in shielded middle-layer"!
- engineers at work on schematics

preferred clock to be received: 98.5 MHz, we aim ALCOR@396 MHz using SkyWOrks Si5236

RDO and ePIC DAQ

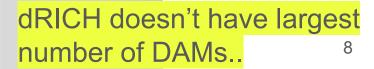
dRICH has largest number of RDOs in ePIC


EPIC Detector Scale and Technology Summary:

Detector System	Channels	RDO	Gb/s (RDO)	Gb/s (Tape)	DAM Boards	Readout Technology	Notes
Si Tracking: 3 vertex layers, 2 sagitta layers, 5 backward disks, 5 forward disks	7 m ² 36B pixels 5,200 MAPS sensors	400	26	26	17	MAPS: Several flavors: curved its-3 sensors for vertex Its-2 staves / w improvements	Fiber count limited by Artix Transceivers
MPGD tracking: Electron Endcap Hadron Endcap Inner Barrel Outer Barrel	16k 16k 30k 140k	8 8 30 72	1	.2	5	uRWELL / SALSA uRWELL / SALSA MicroMegas / SALSA uRWELL / SALSA	64 Channels/Salsa, up to 8 Salsa / FEB&RDO 256 ch/FEB for MM 512 ch/FEB for uRWELL
Forward Calorimeters: LFHCAL HCAL insert* ECAL W/SciFi Barrel Calorimeters: HCAL ECAL SciFi/PB ECAL ASTROPIX Backward Calorimeters: NHCAL ECAL (PWO)	63,280 8k 16,000 7680 5,760 500M pixels 3,256 2852	74 9 64 9 32 230 18 12	502	28	19	SiPM / HG2CROC SiPM / HG2CROC SiPM / Discrete SiPM / HG2CROC SiPM / HG2CROC Astropix SiPM / HG2CROC SiPM / Discrete	Assume HGCROC 56 ch * 16 ASIC/RDO = 896 ch/RDO 32 ch/FEB, 16 FEB/RDO estimate, 8 FEB/RDO conserve. HCAL 1536x5 *HCAL insert not in baseline Assume similar structure to its-2 but with sensors with 250k pixels for RDO calculation. 24 ch/feb, 8 RDO estimate, 23 RDO conservative
Far Forward: B0: 3 MAPS layers 1 or 2 AC-LGAD layer 2 Roman Pots 2 Off Momentum ZDC: Crystal Calorimeter 32 Silicon pad layer 4 silicon pixel layers 2 boxes scintillator	300M pixel 1M 1M (4 x 135k layers x 2 dets) 640k (4 x 80k layers x 2 dets) 400 11,520 160k 72	10 30 64 42 10 10 10 2	15	8	8	MAPS AC-LGAG / EICROC AC-LGAD / EICROC AC-LGAD / EICROC APD HGCROC as per ALICE FoCal-E	3x20cmx20cm 600^cm layers (1 or 2 layers) 13 x 26cm layers 9.6 x 22.4cm layers There are alternatives for AC-LGAD using MAPS and low channel count DC-LGAD timing layers
Far Backward: Low Q Tagger 1 Low Q Tagger 2 Low Q Tagger 1+2 Cal 2 x Lumi PS Calorimeter Lumi PS tracker	1.3M pixels 480k pixels 700 1425/75 80M pixels	12 12 1 1 24	150	1	4	Timepix4 (SiPM/HG2CROC) / (PMT/FLASH) Timepix4	
PID-TOF: Barrel Endcap	2.2M 5.6 M	288 212	31	1	17	AC-LGAD / EICROC (strip) AC-LGAD / EICROC (pixel)	bTOF 128 ch/ASIC, 64 ASIC/RDO eTOF 1024 pixel/ASIC, 24-48 ASIC/RDO (41 ave)
PID-Cherenkov: dRICH	317,952	1242	1240	13.5	28	SiPM / ALCOR	Worse case after radiation. Includes 30% timing window. Requires further data volume reduction
pfRICH DIRC	69,632 69,632	17 24	24 11	12.5 6	1 1	HRPPD / EICROC (strip or pixel) HRPPD / EICROC (strip or pixel)	software trigger

Summary of Channel Counts and Data Flow

Detector	Channels						Fiber	DAM	Data	Data
Group	MAPS	AC-LGAD	SiPM/PMT	MPGD	HRPPD/ MCP-PMT		(single)		Volume (RDO) (Gb/s)	Volume (To Tape) (Gb/s)
Tracking (MAPS)	16B					n/a	3158	35	26	26
Tracking (MPGD)				202k		118	236	5	1	1
Calorimeters	500M		104k			451	902	14	502 —	> 28
Far Forward		1.4M	253k			247	624	10	15	8
Far Backward	66M	60k	2k			38	518	14	150 -	$\rightarrow 1$
PID (TOF)		7.8M				500	1500	14	31 —	→ 1
PID Cherenkov			320k		140k	1283	2583	32	1275 —	→ 32
TOTAL	16.9B	10.4M	679k	202k	140k	2637	9521	124	2,000	96

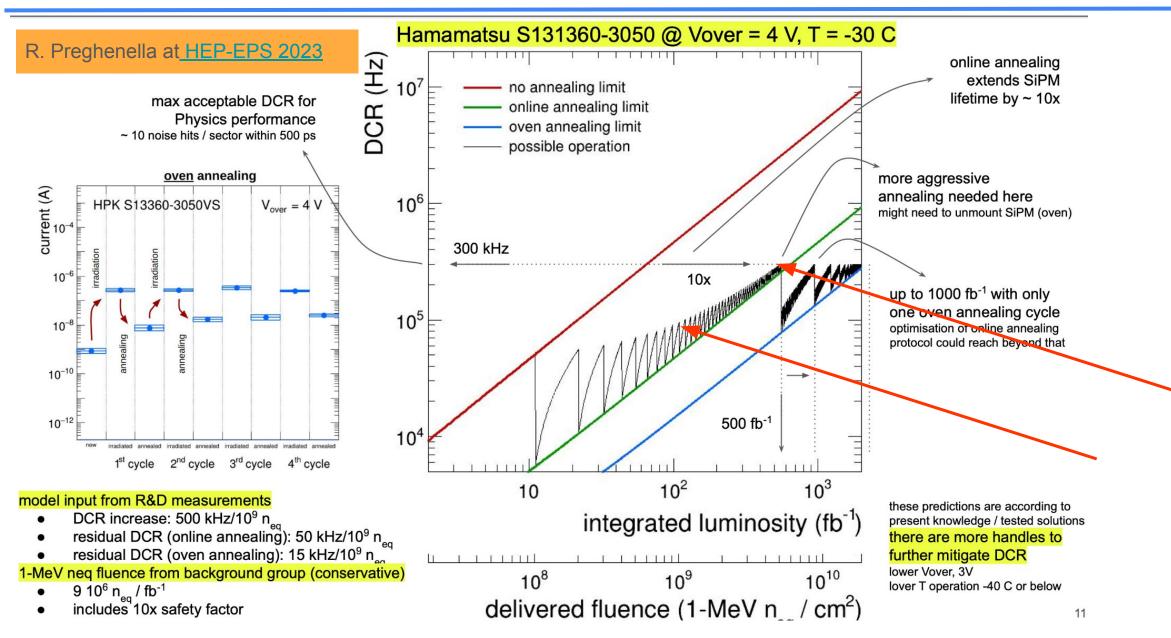


New numbers coming out with improvements:

- Correct Thresholds
- Simulation Properties
- Updated Collider Lattice
- Distributions of hits
 within detectors
- More realistic ASIC behavior
- Better understanding of software triggering scheme

See Elke's talk and ePIC background group wiki

For now, these are last summer's numbers


Data throughput modeling (update)

dRICH DAQ parameters				ALCOR parameters			Notes		
RDO boards	1248			Front end limit [kHz]		4000			
ALCOR64 x RDO	4			ALCOR Clock [MHz]		394,08 🔻	It will be 394.08 MHz or 295.55 MHz		
dRICH channels (total)	319488			Channels/serializer		8			
Number of DAM L1	27			Bits per hit		64	64 2 32-bit words per hit (also TOT)		
Input link in DAM L1	47			Bits per hit encoding 8/10		80			
Output links in DAM L1	1			Serializer band limit [Mb/s]		788,16			
Number of DAM L2	1			Theoretical Serializer limit/ channel [kHz			this would be with 0 control words		
Input link to DAM L2	27			Serializer limit single ch [kHz]	-		this is expected to improve with ALCOR	₹ v3	
Link bandwidth [Gb/s] (assumes VTRX+)	10			Number of serializer per chip		8			
Interaction tagger reduction factor	200			Channel/chip		64			
interaction tagger latency [s]	2,00E-06			Shutter width (ns)		2			
EIC parameters	2,002-00					2			
EIC Clock [MHz]	98,522								
				Bandwidth analysis		Limit	Comments		
Orbit efficiency (takes into account gap)	0,92		INPU ⁻		300,00				
		_		Rate post-shutter [kHz]	55				
 numbers passed to ePIC 				Throughput to serializer [Mb/s]	34	,			
•	woral diag	uccion	a t	Throughput from ALCOR64 [Mb/s]	276		limit FPGA dependent: with RDO prototype we will ha	ave somethin	
• interaction tagger critical (se	everal disc	u551011	αι	Throughput from RDO [Gb/s]			based on VTRX+		
ANL)				Input at each DAM I [Gbps]	50				
7	formed to by	Ideat		Buffering capacity at DAM I [MB]	0		to be checked but seems manageable		
 some of the "pressure" trans 	siened to bu	Jagel		Throughput from DAM I to DAM II [Gbps]	0		this might be higher (from FELIX to FELIX)		
				Output to each DAM II [Gbps]	0	84 270,00	J		
Note this is with 200		_							
	5								
interaction toggar									
interaction tagger				Aggregated dRICH data		Comments			
				Total input at DAM I [Gb/s]	1.368	14 This is only "ins	his is only "inside" DAM, not to be transferred on PCI		
reduction factor				Total input at DAM III Ch/a 1	6	A This is based of	a conversion above I reduction factor of the interaction	n toggor	
				Total input at DAM II [Gb/s]	- 0	64 THIS IS DASEU OF	aggregation above + reduction factor of the interaction	in tayyer	

Ageing model and some DAQ consequences...

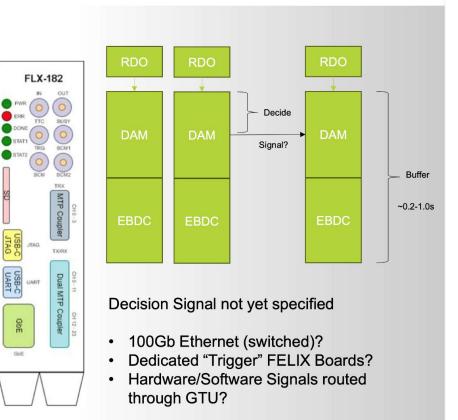
dRICH throughput during EIC life...

When	DCR	Total throughput at DAM-I	Total throughput at DAM-II
starting	2	9.2 Gbps	< 1 Gbps
after 100 fb ^{-1 (and several annealing cycles)}	100	456 Gbps	2.28 Gbps
"at limit"	300	1.3 Tbps	6.84 Gbps

this is with factor 200 but...

https://docs.google.com/spreadsheets/d/1P3qoogFWuicXDgojwvhaFL2EnwQ7BEmGIITg1fwDUkE/edit#gid=0

Questions:


- a) when the ePIC DAQ really starts having a problem? (max. throughput FELIX2-PCIe?) [it is also useful info for data reduction target inside DAM-II at FPGA]
- b) any scenario about machine luminosity (and radiation) in 2031-2034?

Note on latency of interaction tagger

Triggering To Do

- Technical Issues
 - How is the communication handled?
- Trigger Issues
 - What are the algorithms, and what detectors go into the algorithms?
 - dRICH
 - Does not need to be collision trigger. Trigger only needs to ensure that there is a real hit in the detector
 - Low Q Tracker
 Collision Trigger expected
 Could use prescale instead
- Collision detector detector?
 - Do we need one?
 - Can we construct one?
 - What would it look like?

the model so far uses 2 µsec latency

Eth implementation on FLX-192 to distribute "interaction tagger"?

<u>Note</u>: 2 ms latency instead would require 12.8 MB buffering capacity (with 300 KHz DCR rate) in FLX-182

2024	2025	2026
 hardware effort RDO prototype as close as possible to final RDO readout of old FEB32 initial ePIC link test with RDO (clock) input to TDR radiation tests 	 integration with ALCOR64 in the PDU readout with VC709 & ePIC link (including clock) RDO rev. 2 final components possibly test in detector box (likely radiation tests again) 	 FELIX available in ePIC to groups use of DAM (FELIX2) crucial firmware development L1-DAM / L2-DAM

2027	2028	2029
production	assembly	assembly in-situ DAM deployment + commissioning

in parallel:

- someone has to think/build ePIC interaction tagger
- further data reduction/calibration through L2-DAM FPGA or SRO to be integrated

Conclusions

- ongoing effort toward specifications/requirements for RDO (at 60/70%)
- secured VTRx+ and almost defined FPGA baseline
- need of highly integrated development of RDO with other dRICH electronic components
- ePIC link protocol still not defined, we need to remain close to central ePIC DAQ
- at the forefront \rightarrow designing first ePIC RDO (risk of later specs/surprises)
- ePIC interaction tagger is crucial to dRICH architecture \rightarrow need to work with ePIC/EIC project