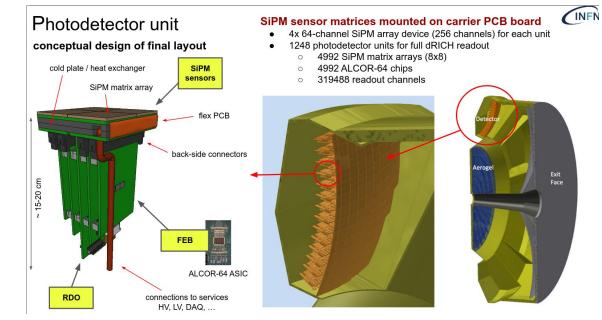


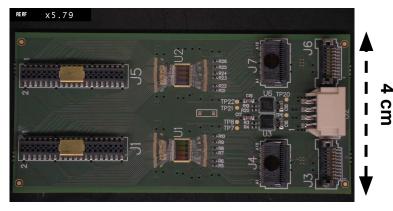
ALCOR - dRICH Readout

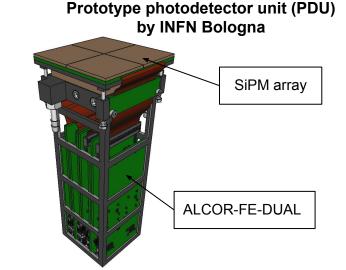

Fabio Cossio on behalf of the ALCOR and dRICH Readout Team INFN Torino

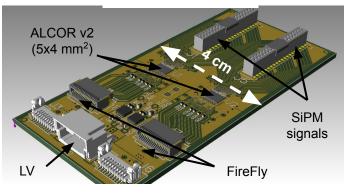
EPIC Electronics & DAQ WG meeting eRD109 Monthly Progress Reports

01.02.2024

Outline

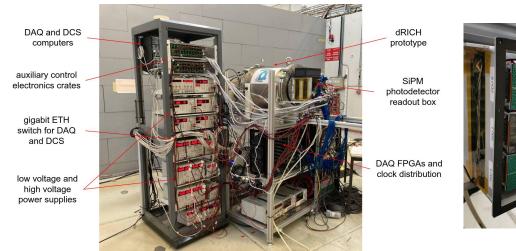

- Current status with ALCOR v2
- ALCOR v3 design status
- RDO design status

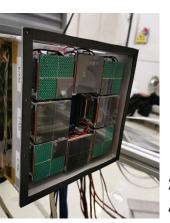


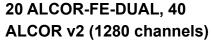

ALCOR 2023 readout system

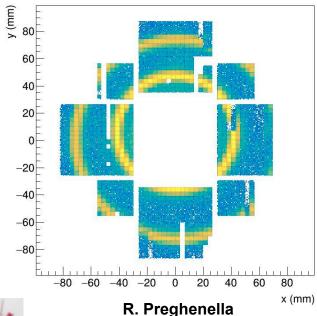
ALCOR-FE-DUAL board

- Two 32-channel ALCOR v2 ASICs wire-bonded on the PCB
- 4 ALCOR-FE-DUAL boards for each PDU
- System used for Oct 2023 CERN PS beam test

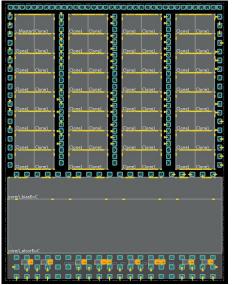



designed by INFN Torino


ALCOR 2023 readout system

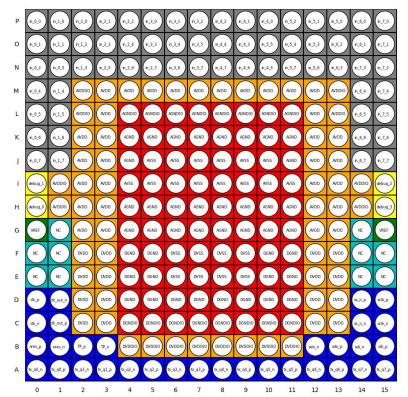

ALCOR-FE-DUAL board

- Two 32-channel ALCOR v2 ASICs wire-bonded on the PCB
- 4 ALCOR-FE-DUAL boards for each PDU
- System used for Oct 2023 CERN PS beam test



Preliminary floorplan

Towards ALCOR v3


Now: 32-channel wire bonded ASIC

Next: 64-channel ASIC inside BGA package

8x8 pixel matrix ASIC

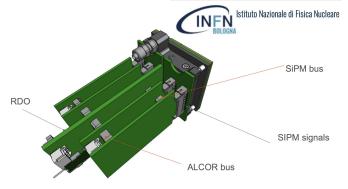
- SiPM inputs bump pads between the pixel sectors
- Digital EoC in the bottom part

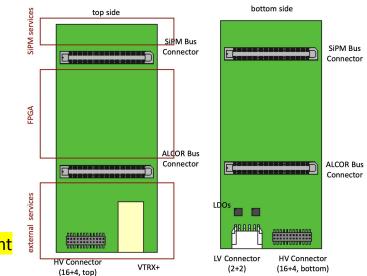
256 balls BGA package (size = 12-16 mm)

- Power and ground on inner/mid contacts
- I/O on outer contacts

Towards ALCOR v3

- 64-channel version with BGA package
- Revise **ALCOR FE** design to optimize ALCOR response with dRICH SiPM sensors
 - Small internal modifications: increased amplifier bandwidth + hysteresis discriminator (schematic done, layout ongoing)
 - Studies on time walk correction: ToT mode already tested (Oct 2023 beam test) → ok, but not perfect due to *afterpulse* and *crosstalk* effects. Slew Rate mode also available in ALCOR v2 → to be tested in the next months (simulations, laser tests, beam test)
- **Digital logic** new features and bug fixes
 - **Digital shutter** for data reduction (EIC bunch crossing: 10 ns \rightarrow 1-2 ns time window)
 - Operation of ALCOR with multiple of EIC clock frequency (98.52 MHz): **394.08 MHz** (or 295.56 MHz)
 - TDC logic fix to remove orphan data, increased EoC FIFO size to cope with higher data rates

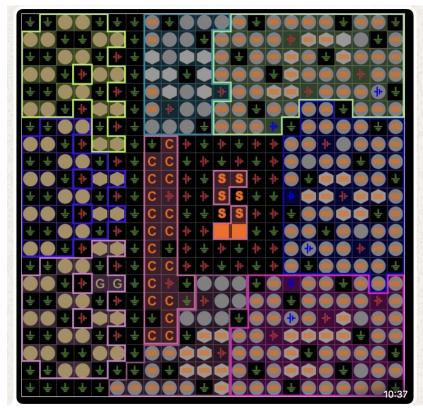

Update on dRICH RDO design (January activity)


- Challenging constraints on dimensions for dRICH (4x9 cm)
- Started design for schematics/selection of components
- Currently porting **firmware** currently running on KC705 to AUP15 FPGA for ALCOR readout

Current components candidates:

- Main FPGA: Xilinx AU15P-SBVB484
- Opt. tranc. VTRx+
- Scrubber FPGA: Microchip MPF050T-FCS9325
- QSPI Flash
- Samtec connectors (ALCORbus and SIPMbus): ERM5-050/020-XX
- Clock multiplier/jitter cleaner: SkyWorks SI5326
- T sensor: AD7416AR3 (close to LDOs and VTRX+)
- 1 MCU to be selected
- LDOs and current monitor to be selected
- I2C I/O expander TBC

We plan to "validate" with pin plan study the AU15P and then move to study PolarFire scrubber and then to LDO scheme/power management


- pin-plan study for Xilinx AU15P-SBVB484
- support connections for 4 ALCOR-64 (4 FEB)
- not yet fitting!

Power Management ideas:

- LV needed: 0.85, 0.90, 1.0, 1.2, 1.8, 2.5, 3.3
- primary LV may be 1.5 and 3.3V?
- MAX893L as current monitor?
- MCU? (AVR/ATmega..)
- an attractive LDO might be: LTM4709 (triple 3A)

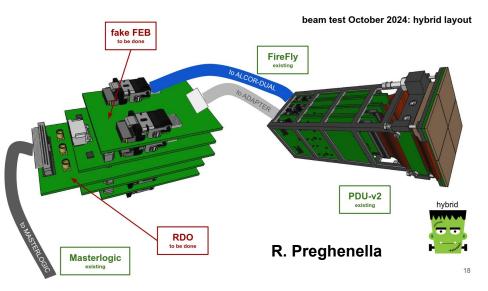
Might be useful a common ePIC database/repository for selected components with respect to irradiations tests

AND: Preparing application for PAC of Trento proton facility for ALCOR **irradiation** in June/July and RDO in December for irradiation tests

Si53xx-RM

Table 1. Product Selection Guide

Part Number	Control	Number of Inputs and Outputs	Input Frequency (MHz) [*]	Output Frequency (MHz) [*]	RMS Phase Jitter (12 kHz–20 MHz)	PLL Bandwidth	Hitless Switching	Free Run Mode	Package
Si5315	Pin	1PLL, 2 2	0.008–644	0.008–644	0.45 ps	60 Hz to 8 kHz	•		6x6 mm 36-QFN
Si5316	Pin	1PLL, 2 1	19–710	19–710	0.3 ps	60 Hz to 8 kHz			6x6 mm 36-QFN
Si5317	Pin	1PLL, 1 2	1–710	1–710	0.3 ps	60 Hz to 8 kHz			6x6 mm 36-QFN
Si5319	I ² C/SPI	1PLL, 1 1	0.002–710	0.002–1417	0.3 ps	60 Hz to 8 kHz		•	6x6 mm 36-QFN
Si5323	Pin	1PLL, 2 2	0.008–707	0.008–1050	0.3 ps	60 Hz to 8 kHz	•		6x6 mm 36-QFN
Si5324	I ² C/SPI	1PLL, 2 2	0.002-710	0.002–1417	0.3 ps	4 Hz to 525 Hz	•	•	6x6 mm 36-QFN
Si5326	I ² C/SPI	1PLL, 2 2	0.002–710	0.002–1417	0.3 ps	60 Hz to 8 kHz	•	•	6x6 mm 36-QFN
Si5327	I ² C/SPI	1PLL, 2 2	0.002–710	0.002-808	0.5 ps	4 Hz to 525 Hz	•	•	6x6 mm 36-QFN
Si5328	I ² C/SPI	1PLL, 2 2	0.008–346	0.002–346	0.35 ps	0.05 Hz to 6 Hz	•	•	6x6 mm 36-QFN
Si5366	Pin	1PLL, 4 5	0.008–707	0.008–1050	0.3 ps	60 Hz to 8 kHz	•		14x14 mn 100-TQFF
Si5368	I ² C/SPI	1PLL, 4 5	0.002–710	0.002–1417	0.3 ps	60 Hz to 8 kHz	•	•	14x14 mn 100-TQFF
Si5369	I ² C/SPI	1PLL, 4 5	0.002–710	0.002–1417	0.3 ps	4 Hz to 525 Hz	•	•	14x14 mn 100-TQFF
Si5374	l ² C	4PLL, 8 8	0.002–710	0.002-808	0.4 ps	4 Hz to 525 Hz	•	•	10x10 mr 80-BGA
Si5375	l ² C	4PLL, 4 4	0.002–710	0.002-808	0.4 ps	60 Hz to 8 kHz	•	•	10x10 mr 80-BGA
Si5376	l ² C	4PLL, 8 8	0.002–710	0.002-808	0.4 ps	60 Hz to 8 kHz	•	•	10x10 mr 80-BGA


Note: Maximum input and output rates may be limited by speed rating of device. See each device's data sheet for ordering information. Note on clock selection/jitter cleaner:

- current candidate assumes we recover 98.5 MHz from link and we then multiply x4 to feed ALCOR (via FPGA)
- any experience in radiation? This is critical!

FEBs design

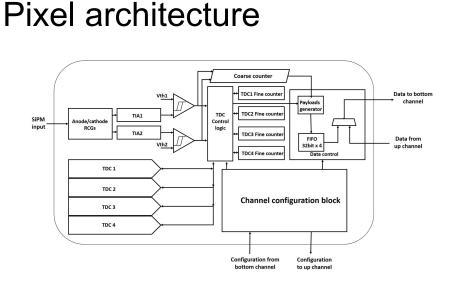
- **"Fake-FEB"**: interface board only for 2024 activities
 - Use current ALCOR-FE-DUAL boards with RDO
 - Defined digital signals distribution: it will mount some LVDS splitters to control the two 32-channel ALCOR chips on the ALCOR-FE-DUAL

This will allow us to replace the stack of commercial FPGAs with prototype RDOs already during 2024 (without new ASIC)

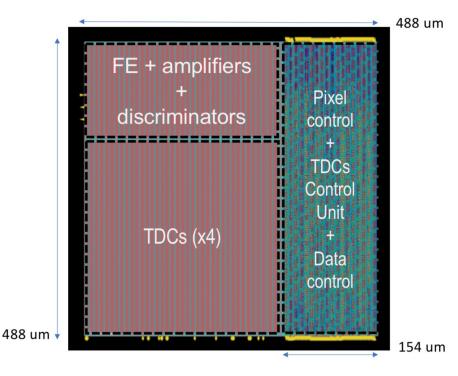
- **Final FEB**: ePIC dRICH Front-End Board
 - Host ALCOR v3 chip inside the BGA package (available in 2025)
 - Started selection of components to match RDO design

Plans for 2024

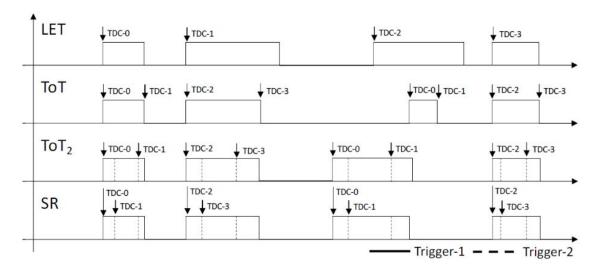
- Complete design of ALCOR v3: ASIC tape-out (Sep 2024) + package design (Fall 2024)
- Design of **RDO prototype**, as close as possible to final (Jun 2024)
- **RDO readout** using current ALCOR FE-DUAL board (Oct 2024 beam test)
- Irradiation tests campaign (SEU and TID) at Centro of Proton-Therapy in Trento: ALCOR v2 (Jul 2024) and RDO (Dec 2024)


Spare slides

ALCOR (A Low Power Chip for Optical Sensor Readout)


ASIC developed for the readout of the EIC dRICH SiPM sensors

- **32-pixel** matrix (8x4) mixed-signal ASIC
- **SiPM readout**: single-photon time tagging + Time-over-Threshold measurement
- 32-bit (64-bit in ToT mode) event word generated on-pixel and propagated down the column
- Fully digital output: 4 LVDS 320 MHz DDR Tx links


			Тор р	ads					
Pix0	Pix0	Pix0	Pix0	Pix0	Pix0	Pix0	Pix0		
Col0	Col1	Col2	Col3	Col4	Col5	Col6	Col7		
Pix1	Pix1	Pix1	Pix1	Pix1	Pix1	Pix1	Pix1		
Col0	Col1	Col2	Col3	Col4	Col5	Col6	Col7		
Pix2	Pix2	Pix2	Pix2	Pix2	Pix2	Pix2	Pix2		
Col0	Col1	Col2	Col3	Col4	Col5	Col6	Col7		
Pix3	Pix3	Pix3	Pix3	Pix3	Pix3	Pix3	Pix3		
Col0	Col1	Col2	Col3	Col4	Col5	Col6	Col7		
	100		FE bi	asing					
End of column									
			Bottom	pads					

- TIA amplifier with RCG input stage
- 2 independent post-amp branches with 4 gain settings
- 2 leading edge discriminators with independent (and per pixel) threshold settings (6-bit DAC)
- 4 **TDCs** based on **analogue interpolation** with 25-50 ps time-bin (at 320 MHz clock frequency)
- Pixel control logic handles TDC operation, pixel configuration and data transmission

ALCOR pixel operating modes

4 operating modes:

- LET: leading edge measurement
- ToT: Time-over-Threshold measurement using the first discriminator for both edges
- ToT2: Time-over-Threshold measurement using both discriminators
- SR: slew-rate measurement

Each mode can be set to:

- FE: normal operation mode
- FE_TP: send test-pulse to analogue front-end
- TDC_TP: send test-pulse to pixel control logic to test and calibrate TDCs (bypass front-end)

Each pixel can also be disabled

ALCOR v3 (digital)

Definition of ALCOR-64 digital I/Os to match RDO design \rightarrow 16 LVDS signals

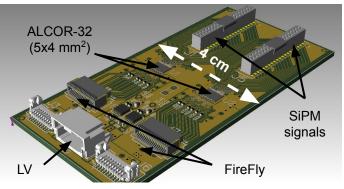
- 8 DOUT 1 TP/SHUTTER
 - 1 RESET
- 1 CLKOUT

1 CLKIN

4 SPI

394.08 MHz clock frequency operation (4 x 98.52 MHz): tested ALCOR v1 at 390 MHz with promising results, more detailed tests and simulations are required, digital implementation must be re-done with new constraints

Digital shutter: "inhibit" pixel digital logic to reduce data throughput (10 ns bunch crossing, 250 ps bunch length, select 1-2 ns \rightarrow 5-10x data reduction before ALCOR digitization)


- \rightarrow Asynchronous digital shutter implemented in ALCOR v3 pixel logic
 - Programmable delays to guarantee same time window for all the channels across the matrix
 - Need to evaluate effect due to time-walk and thresholds dispersion

ALCOR v3 FEB

Start design of the EPIC dRICH Front-End Board (FEB), hosting the ALCOR v3 chip inside the BGA package

- Two ALCOR v2 (32 channels) replaced by one ALCOR v3 (64 channels)
- Firefly connectors replaced by connectors towards RDO board
- Add annealing Mosfets (currently mounted on adapter board)

ALCOR-FE-DUAL (2023-24 version)

Photodetector unit (conceptual design of final layout)

