
THE PHOENIX EVENT DISPLAY 
FRAMEWORK

EDWARD MOYSE

1



INTRODUCTION

▸ In 2017 the HSF visualisation white paper identified the desirability of having a 
common event format, and a common tool to visualise event data (and geometry) 

▸ Up until now, event displays have tended to be per-experiment 

▸ Phoenix is an experiment agnostic display, supported by the HSF visualisation 
group: 

▸ Repository: https://github.com/HSF/phoenix 

▸ Demo: http://hepsoftwarefoundation.org/phoenix/ 

▸ Runs entirely in the browser, so scalable and cheap to host 

▸ Uses industry standard, such as three.js and angular, nodeJS, NPM (+ 
other libraries) 

▸ (Also a demo using reactjs) 

▸ Extensible by design 

▸ Currently has built in support for LHCb, ATLAS, CMS, TrackML , EDM4HEP 
geometry and/or event data 

▸ Currently officially used by ATLAS, FCC, LHCb, Belle-II (see 
documentation)

2

https://arxiv.org/abs/1811.10309
https://github.com/HSF/phoenix
http://hepsoftwarefoundation.org/phoenix/
https://threejs.org
https://angular.io
https://github.com/9inpachi/phoenix-react/blob/master/src/App.js#L6-L31
https://reactjs.org
https://github.com/HSF/phoenix?tab=readme-ov-file#examples-of-phoenix-in-use


SUPPORTED PHYSICS OBJECTS

▸ Tracks - the trajectory of a charged particle 
(usually in a magnetic field) 

▸ Calorimeter cells - deposits of energy in a 
calorimeter (planar and cylindrical are 
supported). 

▸ Jets - cones of activity within the detector 

▸ Hits - individual measurements, which can either 
be points or lines 

▸ Vertices - optionally linked to tracks 

▸ Compound objects (e.g. 'Muons', which link 
'Tracks' and ‘Clusters’) 

▸ Missing energy

3



SUPPORTED PHYSICS OBJECTS

▸ Tracks - the trajectory of a charged particle 
(usually in a magnetic field) 

▸ Calorimeter cells - deposits of energy in a 
calorimeter (planar and cylindrical are 
supported). 

▸ Jets - cones of activity within the detector 

▸ Hits - individual measurements, which can either 
be points or lines 

▸ Vertices - optionally linked to tracks 

▸ Compound objects (e.g. 'Muons', which link 
'Tracks' and ‘Clusters’) 

▸ Missing energy

4



SUPPORTED PHYSICS OBJECTS

▸ Tracks - the trajectory of a charged particle 
(usually in a magnetic field) 

▸ Calorimeter cells - deposits of energy in a 
calorimeter (planar and cylindrical are 
supported). 

▸ Jets - cones of activity within the detector 

▸ Hits - individual measurements, which can either 
be points or lines 

▸ Vertices - optionally linked to tracks 

▸ Compound objects (e.g. 'Muons', which link 
'Tracks' and ‘Clusters’) 

▸ Missing energy

5



SUPPORTED PHYSICS OBJECTS

▸ Tracks - the trajectory of a charged particle 
(usually in a magnetic field) 

▸ Calorimeter cells - deposits of energy in a 
calorimeter (planar and cylindrical are 
supported). 

▸ Jets - cones of activity within the detector 

▸ Hits - individual measurements, which can either 
be points or lines 

▸ Vertices - optionally linked to tracks 

▸ Compound objects (e.g. 'Muons', which link 
'Tracks' and ‘Clusters’) 

▸ Missing energy

6



SUPPORTED PHYSICS OBJECTS

▸ Tracks - the trajectory of a charged particle 
(usually in a magnetic field) 

▸ Calorimeter cells - deposits of energy in a 
calorimeter (planar and cylindrical are 
supported). 

▸ Jets - cones of activity within the detector 

▸ Hits - individual measurements, which can either 
be points or lines 

▸ Vertices - optionally linked to tracks 

▸ Compound objects (e.g. 'Muons', which link 
'Tracks' and ‘Clusters’) 

▸ Missing energy

7



SUPPORTED PHYSICS OBJECTS

▸ Tracks - the trajectory of a charged particle 
(usually in a magnetic field) 

▸ Calorimeter cells - deposits of energy in a 
calorimeter (planar and cylindrical are 
supported). 

▸ Jets - cones of activity within the detector 

▸ Hits - individual measurements, which can either 
be points or lines 

▸ Vertices - optionally linked to tracks 

▸ Compound objects (e.g. 'Muons', which link 
'Tracks' and ‘Clusters’) 

▸ Missing energy

8



SUPPORTED PHYSICS OBJECTS

▸ Tracks - the trajectory of a charged particle 
(usually in a magnetic field) 

▸ Calorimeter cells - deposits of energy in a 
calorimeter (planar and cylindrical are 
supported). 

▸ Jets - cones of activity within the detector 

▸ Hits - individual measurements, which can either 
be points or lines 

▸ Vertices - optionally linked to tracks 

▸ Compound objects (e.g. 'Muons', which link 
'Tracks' and ‘Clusters’) 

▸ Missing energy

9



SUPPORTED EVENT DATA FORMATS

▸ Phoenix internally makes use of a JSON 
format to represent event data. The JSON 
format is designed to be human-readable, 
but still compact. 

▸ We also provide “loaders” to convert from 
arbitrary formats to our internal format… 

▸ (More on this later) 

10

https://github.com/HSF/phoenix/blob/main/guides/developers/event_data_format.md


SUPPORTED GEOMETRY

▸ Phoenix can display geometry stored in many standard 
formats: 

▸ Natively supported formats are OBJ, glTF , ROOT, 
json(gz) 

▸ We recommend compressed glTF (glb) as it is the 
most compact, recommended by threejs, and 
Phoenix can automatically populate the detector 
menu with the embedded hierarchy (see our docs 
for more)  

▸ However threejs supports a HUGE number of 
3D formats, so any of these could easily be added 

▸ We also have a workflow (described here) for how to 
convert from GDML to ROOT to glTF/glb 

▸ ACTS can output OBJ format geometry

11

https://github.com/mrdoob/three.js/tree/dev/examples/jsm/loaders

https://github.com/HSF/phoenix/blob/main/guides/developers/geometry-tips.md
https://github.com/HSF/phoenix/blob/main/guides/developers/convert-gdml-to-gltf.md
https://github.com/mrdoob/three.js/tree/dev/examples/jsm/loaders


SHAREABLE URLS
▸ Clicking on the link button in the menu bar opens a 

dialog which provides you with a shareable link 

▸ For example, for outreach, you can give a URL 
which opens Phoenix with a predefined event and 
configuration 

▸ Allows you to frame the physics and geometry 
you want to show 

▸ Can also generate a QR code, for e.g. posters 

▸ Also get an embeddable link, optionally with limited 
GUI 

▸ Useful for e.g. Physics briefing - instead of a static 
event display, you have a rotating, animated (and 
interactive) one 

▸ See for example, Heavyweight champions: a 
search for new heavy W’ bosons with the ATLAS 
detector

12

https://atlas.cern/updates/briefing/search-heavy-W-bosons
https://atlas.cern/updates/briefing/search-heavy-W-bosons
https://atlas.cern/updates/briefing/search-heavy-W-bosons


“LIVE” STREAMING EVENTS

▸ ATLAS copies a small fraction of live 
events to a server 

▸ From here, can open a view 
generated by Atlantis, or a link to 
PhoenixATLAS (the ATLAS-specific) 

▸ The

13



LABELS

▸ Physics objects can be 
given labels: 

▸ Added in collection 
view 

▸ Dedicated entry in 
menu, to turn off/on, 
change colour etc 

14



VR/AR

▸ Rudimentary support for VR/AR  

▸ AR works on Android, VR works in Quest 2 etc, 
see Twitter post for example video 

▸ No menu support in AR/XR so much 
functionality not available 

▸ Ticket 558 

▸ Depends on browser (notably, Safari on iOS does 
not work any more) 

▸ VisionPro will support WebXR, so maybe it will 
FINALLY come to iOS (but I would not bet on it) 

▸ In short, this works, but not on all devices and is 
currently quite limited

15

https://x.com/phoenix_display/status/1412446431969873920?s=20
https://github.com/HSF/phoenix/issues/558
https://developer.apple.com/videos/play/wwdc2023/10279/


EXTENSIBILITY: ADDING A NEW DETECTOR
▸ How would you add a new detector? 

▸ You basically need to add two files 

▸  experiment.component.html file (defines the ‘view’)  

▸ experiment.component.ts  the experiment specific 
implementation i.e. file contains e.g.  

▸ The default configuration and event,  

▸ Loaders required (if you need to convert from another event 
data format to Phoenix format)  

▸ Geometry etc 

▸ And that is it!  

▸ Less than a day of work to add a new detector  

▸ See the documentation for more information 

▸ e.g. How to write your own event data loader 

16

 

https://github.com/HSF/phoenix/blob/master/guides/developers/event-data-loader.md
https://github.com/HSF/phoenix/tree/master/packages/phoenix-event-display/src/loaders


EXTENSIBILITY: ADDING A NEW PHYSICS OBJECT
▸ An example: LHCb authors wanted to add 

CaloCells which do not point to the origin i.e. 
PlanarCaloCells 

▸ Have a look at PR 299 for details (and the 
documentation) 

▸ But, main steps were : 

▸ Add a getPlanarCaloCell function to 
phoenix-objects.ts (which draws 
the cells) 

▸ Call this from phoenix-loader.ts  

▸ And also add relevant cuts/filters, GUI 
options

17
CHECK IF PLANAR 
CELLS IN INPUT

ADD AN ENERGY CUT

ADD A SLIDER TO 
CONTROL SCALE

https://github.com/HSF/phoenix/pull/299
https://github.com/HSF/phoenix/blob/master/guides/developers/event-data-loader.md


ADDING A NEW PHYSICS OBJECT: RESULT 18

PLANAR CALO 
CELLS

ENERGY CUT

SLIDER TO CONTROL 
SCALE



ADDING A NEW PHYSICS OBJECT: RESULT 19

PLANAR CALO 
CELLS

ENERGY CUT

SLIDER TO CONTROL 
SCALE

Feedback from LHCb authors: 

▸ “if you follow the documentation … with 
few modifications it is quite easy and it 
displays successfully and beautifully!” 

▸ “Surprisingly easy to add new objects”



EXTENSIBILITY: ROLL YOUR OWN VERSION 20

npm install phoenix-ui-components
npm install phoenix-event-display

▸ Of course, you can use Phoenix as part of 
an entirely independent application i.e. 

▸ Your own repository, your own default 
configuration etc 

▸ No Phoenix home screen with demos 
for other experiments 

▸ Just install phoenix, following the detailed 
instructions 

▸ Example: PhoenixATLAS

https://github.com/HSF/phoenix/blob/master/guides/developers/set-up-phoenix.md
https://phoenixatlas.web.cern.ch/PhoenixATLAS/


DOCUMENTATION
▸ How do you learn more? 

▸ Phoenix has detailed developer and user 
guides, as well as API docs

21

https://hepsoftwarefoundation.org/phoenix/api-docs/

CONTRIBUTING.md

users.md

https://hepsoftwarefoundation.org/phoenix/api-docs/
https://github.com/HSF/phoenix/blob/master/CONTRIBUTING.md
https://github.com/HSF/phoenix/blob/master/guides/users.md


▸ I went through the requirements document, and mostly it all seems fine. I had a few comments… 

▸ Section 1 

▸ Subsystem-Specific Troubleshooting - not sure I understand what this means? 

▸ Section 2 

▸ Streaming readout - ditto? 

▸ Automated tools compatible & Batch mode graphics - we do not yet have a batch mode 

▸ Security - we use industry standard tools such as threejs, angular, node etc 

▸ Visualization Capabilities - showing active detector elements can be shown, but this is not trivial 
and needs improvements. 

▸ Remote data sources - we can load data from local directories (can be network mounted) on 
server, or via URL. Is this sufficient?

HOW DOES PHOENIX MATCH THE EPIC REQUIREMENTS? 22

https://docs.google.com/document/d/1JgPryzVtyheSLeRNar4utEYvkoz4q4lX3g-Vs-xMSt8/edit
https://gitlab.cern.ch/LHCbOutreach/phoenix/-/blob/master/packages/phoenix-ng/projects/phoenix-app/src/app/sections/lhcb/lhcb.component.ts#L85


CONCLUSION

▸ Very brief overview of Phoenix 

▸ Didn’t have time to cover many features, 
such as the integrated RK propagator, object 
collection cuts etc etc 

▸ If you are interested in using Phoenix, or 
contributing, please contact us: 

▸ Via github issues: [link] or discussions: [link] 

▸ Or on our mailing list: phoenix-event-
display@cern.ch 

23

 

https://github.com/HSF/phoenix/issues
https://github.com/HSF/phoenix/discussions
mailto:phoenix-event-display@cern.ch
mailto:phoenix-event-display@cern.ch
https://github.com/HSF/phoenix/blob/master/guides/users.md#vr-mode


BACKUP

24



WALKTHROUGH: PLAYGROUND AND GEOMETRY

▸ In Geometry [link], you can 
open the javascript console 
in your browser and 
programmatically add a 
very simple detector 

▸ e.g.

25

var parameters = { ModuleName: "Module 3”, Xdim: 10., Ydim: 
1., Zdim: 45, NumPhiEl: 64, NumZEl: 10, Radius: 75, MinZ: 
-250, MaxZ: 250, TiltAngle: 0.3, PhiOffset: 0.0, Colour: 
0x00ff00, EdgeColour: 0x449458 }; 

window.eventDisplay.buildGeometryFromParameters(parameters);

https://hepsoftwarefoundation.org/phoenix/#/geometry


DESIGN CONCEPTS

▸ In order to support as many experiments as possible, some key goals: 

▸ Permissive licence and open source (Apache 2.0 Licence) 

▸ Use industry standards  

▸ Simple standard format for Event Data 

▸ Good documentation 

▸ Don’t make experiment specific assumptions  

▸ Make Phoenix configurable, extendable and modular

26



MENUS AND HELPERS

▸ Phoenix provides lots of functionality to 
help developers 

▸ e.g Phoenix has its own menu system 
phoenix-ui-components 

▸ Phoenix also has many classes to help 
render physics data e.g. 

▸ Many experiments only store limited 
numbers of track parameters, so cannot 
draw a complete curve 

▸ Phoenix provides a RungeKutta 
propagator  

▸ You just need to supply the magnetic 
field!

▸ Body Level One 

▸ Body Level Two 

▸ Body Level Three 

▸ Body Level Four 

▸ Body Level Five

27

https://hepsoftwarefoundation.org/phoenix/api-docs/classes/RungeKutta.html

https://github.com/HSF/phoenix/tree/master/packages/phoenix-ng/projects/phoenix-ui-components
https://hepsoftwarefoundation.org/phoenix/api-docs/classes/RungeKutta.html


EXTENSIBILITY

▸ The experiment.component.html file, 
specifies what is used in the view …

28

 

 

atlas.component.html

1. Link back to main Phoenix page

1

2. Phoenix row menu

2

3. Experiment logo, link and info

3

4. Phoenix geometry/event data menu

4

https://github.com/HSF/phoenix/tree/master/packages/phoenix-event-display/src/loaders
https://github.com/HSF/phoenix/tree/master/packages/phoenix-ng/projects
https://github.com/HSF/phoenix/blob/master/packages/phoenix-ng/projects/phoenix-app/src/app/sections/atlas/atlas.component.html

