Effects of changing the initial covariance matrix

(trackparam.setLocError({...})

Jeetendra Gupta Barak Schmookler Particle : muon # of events = 10k P = [0,20] GeV/c Eta = [-4,4] Phi = [0,2pi] epic_craterlake.xml Motivation behind studying/changing the covariance matrix (trackparam.setLocError({...}))

trackparam.setLocError({0.1,0.1})

We observe that loc a for real seeding (before and after CKF) is asymmetric and has a resolution of more than 0.1 mm

trackparam.setLocError({1,1})

By changing the error to 1 mm, we observe a big improvement in the loc a for real seeding after CKF. It becomes symmetric and is almost same as that of truth seeding

consequences

1) Improvement in charge calculation for real seeding after CKF

Before changing the covariance matrix

6

After changing the covariance matrix

2) Improvement in unique tracks for real seeding after CKF (2 mrad angle cut)

trackparam.setLocError({0.1,0.1})

trackparam.setLocError({1,1})
More single unique tracks are observed

3) Improvement in Momentum distribution for real seeding after CKF (2 mrad angle cut)

trackparam.setLocError({0.1,0.1})

Momentum distribution

Vertex = (0,0,0) mm

trackparam.setLocError({1,1}) Momentum distribution looks more uniform now for real seeding after CKF, especially in low momentum region

4) Improvement in Phi distribution for real seeding after CKF (2 mrad angle cut)

trackparam.setLocError({0.1,0.1})

trackparam.setLocError({1,1}) Phi distribution for real seeding after CKF also improves

Vertex = (0,0,0) mm

5) Improvement in Theta distribution for real seeding after CKF (2 mrad angle cut)

trackparam.setLocError({0.1,0.1})

trackparam.setLocError({1,1}) Theta distribution also becomes better for real seeding after CKF

Vertex = (0,0,0) mm

Working progress

trackparam.setLocError({0.1,0.1}) More tracks with 2 measurements are observed

number of measurements

trackparam.setLocError({1,1}) Less tracks with 2 measurements are observed

number of measurements

8000 7000 6000 5000 4000 3000 2000 1000

Vertex = (0,0,0) mm

Number of outliers

trackparam.setLocError({0.1,0.1})

trackparam.setLocError({1,1})

trackparam.setLocError({0.1,0.1})

number of holes

Vertex = (0,0,0) mm

trackparam.setLocError({1,1})

Vertex = (0,0,0) mm

trackparam.setLocError({0.1,0.1})

Vertex = (10,0,0) mm

trackparam.setLocError({1,1})

