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Random Matrix Theory

Problem: How to understand the energy levels of heavy nuclei.
(Solving the Schrödinger equation is too difficult.)

Wigner (1951): replace the Hamiltonian by a totally random
matrix,

P(H) ≈ e−N trH2

FIG. 8. Photograph of Niels Bohr’s wooden toy model for compound–nucleus scattering. Taken from Ref. 10.

In his appeal to such statistical concepts, Bohr prepared the ground for Wigner’s work. In fact, RMT may be seen
as a formal implementation of Bohr’s compound nucleus hypothesis. At the same time, it is remarkable that the
concepts and ideas formulated by Bohr have a strong kinship to ideas of classical chaotic motion which in turn are
now known to be strongly linked to RMT. This is most clearly seen in Fig. 811 which is a photograph of a wooden
model used by Bohr to illustrate his idea. The trough stands for the nuclear potential of the target nucleus. This
potential binds the individual nucleons, the constituents of the target, represented as small spheres. An incoming
nucleon with some kinetic energy (symbolized by the billard queue) hits the target. The collision is viewed as a
sequence of nucleon–nucleon collisions which have nearly the character of hard–sphere scattering.

In the absence of a dynamical nuclear theory (the nuclear shell model had only just been discovered, and had not
yet found universal acceptance), Wigner focussed emphasis on the statistical aspects of nuclear spectra as revealed
in neutron scattering data. At first sight, such a statistical approach to nuclear spectroscopy may seem bewildering.
Indeed, the spectrum of any nucleus (and, for that matter, of any conservative dynamical system) is determined
unambiguously by the underlying Hamiltonian, leaving seemingly no room for statistical concepts. Nonetheless, such
concepts may be a useful and perhaps even the only tool available to deal with spectral properties of systems for which
the spectrum is sufficiently complex. An analogous situation occurs in number theory. The sequence of prime numbers
is perfectly well defined in terms of a deterministic set of rules. Nevertheless, the pattern of occurrence of primes
among the integers is so complex that statistical concepts provide a very successful means of gaining information
on the distribution of primes. This applies, for instance, to the average density of primes (the average number of
primes per unit interval), to the root–mean–square deviation from this average, to the distribution of spacings between
consecutive primes, and to other relevant information which can be couched in statistical terms.

The approach introduced by Wigner differs in a fundamental way from the standard application of statistical
concepts in physics, and from the example from number theory just described. In standard statistical mechanics,
one considers an ensemble of identical physical systems, all governed by the same Hamiltonian but differing in initial
conditions, and calculates thermodynamic functions by averaging over this ensemble. In number theory, one considers
a single specimen — the sequence of primes — and introduces statistical concepts by performing a running average
over this sequence. Wigner proceeded differently: He considered ensembles of dynamical systems governed by different
Hamiltonians with some common symmetry property. This novel statistical approach focusses attention on the generic
properties which are common to (almost) all members of the ensemble and which are determined by the underlying
fundamental symmetries. The application of the results obtained within this approach to individual physical systems
is justified provided there exists a suitable ergodic theorem. We return to this point later.

Actually, the approach taken by Wigner was not quite as general as suggested in the previous paragraph. The
ensembles of Hamiltonian matrices considered by Wigner are defined in terms of invariance requirements: With every
Hamiltonian matrix belonging to the ensemble, all matrices generated by suitable unitary transformations of Hilbert
space are likewise members of the ensemble. This postulate guarantees that there is no preferred basis in Hilbert
space. Many recent applications of RMT use extensions of Wigner’s original approach and violate this invariance
principle. Such extensions will be discussed later in this paper.

It is always assumed in the sequel that all conserved quantum numbers like spin or parity are utilized in such
a way that the Hamiltonian matrix becomes block–diagonal, each block being characterized by a fixed set of such
quantum numbers. We deal with only one such block in many cases. This block has dimension N . The basis states
in Hilbert space relating to this block are labelled by greek indices like µ and ν which run from 1 to N . Since Hilbert
space is infinite–dimensional, the limit N → ∞ is taken at some later stage. Taking this limit signals that we do
not address quantum systems having a complete set of commuting observables. Taking this limit also emphasises the
generic aspects of the random–matrix approach. Inasmuch as RMT as a “new kind of statistical mechanics” bears
some analogy to standard statistical mechanics, the limit N → ∞ is kin to the thermodynamic limit.
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FIG. 1. Nearest neighbor spacing distribution for the “Nuclear Data Ensemble” comprising 1726 spacings (histogram)
versus s = S/D with D the mean level spacing and S the actual spacing. For comparison, the RMT prediction labelled GOE
and the result for a Poisson distribution are also shown as solid lines. Taken from Ref. 1.

I. INTRODUCTION

During the last ten years, Random Matrix Theory (RMT) underwent an unexpected and rapid development: RMT
has been successfully applied to an ever increasing variety of physical problems.

Originally, RMT was designed by Wigner to deal with the statistics of eigenvalues and eigenfunctions of complex
many–body quantum systems. In this domain, RMT has been successfully applied to the description of spectral
fluctuation properties of atomic nuclei, of complex atoms, and of complex molecules. The statistical fluctuations of
scattering processes on such systems were also investigated. We demonstrate these statements in Figs. 1, 2 and 3,
using examples taken from nuclear physics. The histogram in Fig. 11 shows the distribution of spacings of nuclear
levels versus the variable s, the actual spacing in units of the mean level spacing D. The data set comprises 1726
spacings of levels of the same spin and parity from a number of different nuclei. These data were obtained from
neutron time–of–flight spectroscopy and from high–resolution proton scattering. Thus, they refer to spacings far from
the ground–state region. The solid curve shows the random–matrix prediction for this “nearest neighbor spacing
(NNS) distribution”. This prediction is parameter–free and the agreement is, therefore, impressive. Typical data
used in this analysis are shown in Fig. 22. The data shown are only part of the total data set measured for the
target nucleus 238U. In the energy range between neutron threshold and about 2000 eV, the total neutron scattering
cross section on 238U displays a number of well–separated (“isolated”) resonances. Each resonance is interpreted as
a quasibound state of the nucleus 239U. The energies of these quasibound states provide the input for the statistical
analysis leading to Fig. 1. We note the scale: At neutron threshold, i.e. about 8 MeV above the ground state,
the average spacing of the s–wave resonances shown in Fig. 2 is typically 10 eV! What happens as the energy E
increases? As is the case for any many–body system, the average compound nuclear level spacing D decreases nearly
exponentially with energy. For the same reason, the number of states in the residual nuclei (which are available for
decay of the compound nucleus) grows strongly with E. The net result is that the average width Γ of the compound–
nucleus resonances (which is very small compared to D at neutron threshold) grows nearly exponentially with E.
In heavy nuclei, Γ ≥ D already a few MeV above neutron threshold, and the compound–nucleus resonances begin
to overlap. A few MeV above this domain, we have Γ " D, and the resonances overlap very strongly. At each
bombarding energy, the scattering amplitude is a linear superposition of contributions from many (roughly Γ/D)
resonances. But the low–energy scattering data show that these resonances behave stochastically. This must also
apply at higher energies. Figure 33 confirms this expectation. It shows an example for the statistical fluctuations
(“Ericson fluctuations”4) seen in nuclear cross sections a few MeV above neutron threshold. These fluctuations are
stochastic but reproducible. The width of the fluctuations grows with energy, since ever more decay channels of the
compound nucleus open up. Deriving the characteristic features of these fluctuations as measured in terms of their
variances and correlation functions from RMT posed a challenge for the nuclear physics community.

These applications of RMT were all in the spirit of Wigner’s original proposal. More recently, RMT has found
a somewhat unexpected extension of its domain of application. RMT has become an important tool in the study
of systems which are seemingly quite different from complex many–body systems. Examples are: Equilibrium and
transport properties of disordered quantum systems and of classically chaotic quantum systems with few degrees of
freedom, two–dimensional gravity, conformal field theory, and the chiral phase transition in quantum chromodynamics.

4

Histogram of nearest neighbor level spacing (when all levels are
arranged monotonically) for the “Nuclear data ensemble”
representing 1726 spacings

p(s) =
πs

2
e−πs2/4

where s is the spacing between levels divided by the mean spacing.

This is in good agreement with random matrix theory.

Lead to “RMT” quantum chaos community.
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Random Couplings
Of course, the actual Hamiltonian is not a random matrix. How to
improve?

Two-body random Hamiltonian (French & Wong ’70, Bohigas & Flores,

’71)

H =
N∑

i ,j ,k,l=1

Jijklc
†
i c
†
j ckcl

where Jij ;kl is drawn from a Gaussian distribution.

Can consider q-body interaction. Sum over all q gives random
matrix theory.
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Sachdev-Ye-Kitaev Model

H =
N∑

i ,j ,k,l=1

Jijklχiχjχkχl

Large N solution: replica-trick, from studies of spin glasses,

Sachdev-Ye (’93): H =
∑

ij JijSi ·Sj (spins in SU(M), large M).

Kitaev (’15): in search of a model of many-body quantum chaos, in
order to describe a black hole.

4

χi χj

χk

χl
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FIG. 2. The SYK model. Blue dots represent Majorana
fermions �j while the green region illustrates one possible 4-
fermion interaction term in the Hamiltonian (3.1).

by Eq. (3.1) remains in the strong coupling regime all the
way to the lowest energies.

A closely related model formulated with complex
fermions [33–35], also known as the complex Sachdev-
Ye-Kitaev (cSYK) model or Sachdev-Ye (SY) model [6],
is defined by the second-quantized Hamiltonian

HcSYK =
X

ij;kl

Jij;klc
†
i c

†
jckcl � µ

X

j

c†
jcj , (3.4)

where c†
j creates a spinless complex fermion, Jij;kl are

zero-mean complex random variables satisfying Jij;kl =
J⇤

kl;ij and Jij;kl = �Jji;kl = �Jij;lk and µ denotes the

chemical potential. At half filling (µ = 0) the two models
exhibit very similar behavior but the cSYK model shows
more complexity when µ 6= 0. In this review we will
focus, for the most part, on the SYK model Eq. (3.1)
as it is more straightforward to analyze. We comment
on the cSYK model as appropriate – we will see that it
might be easier to realize it in a laboratory because it
does not require the elusive Majorana particles as basic
building blocks.

Perhaps the most remarkable and useful property of
the SYK model is that, despite being strongly interact-
ing, it is exactly solvable in the limit of large N . Specif-
ically, it is possible to write down a simple pair of equa-
tions for the averaged fermion propagator

G(⌧, ⌧ 0) =
1

N

X

j

hT⌧�j(⌧)�j(⌧
0)i (3.5)

and the corresponding self energy ⌃(⌧, ⌧ 0), that become
asymptotically exact in the limit N ! 1 and have a
simple solution in the low-frequency limit. This solution
is reviewed in Box 3 and leads to some remarkable con-
clusions.

The equations governing the large-Nsolution (3.15)
display an intriguing time-reparametrization (also re-
ferred to as conformal) invariance at low energies which

hints at a connection of the model to black holes and
string theory. As a practical matter the invariance al-
lows one to extract the low-frequency behavior of the
propagator,

Gc(!n) = i⇡1/4 sgn(!n)p
J |!n|

(3.6)

and the corresponding spectral function

Ac(!) =
1p

2⇡3/4

1p
J |!|

, (3.7)

where subscript c denotes the conformal regime |!| ⌧ J .
At high frequencies the behavior must cross over to 1/!
in both cases. The absence of a pole in Gc(!n) indi-
cates the expected non-Fermi liquid behavior of the SYK
model. In addition we will see that the characteristic
inverse square root singularity of the spectral function
could be measurable by various spectroscopies in some of
the proposed experimental realizations of the model.

The conformal structure implied by Eqs. (3.15), has
also been instrumental in extracting the quantum-chaotic
properties of the SYK model. It allows for the calculation
of the out-of-time-order correlator C(t) which shows the
characteristic exponential growth [7, 8] with the maximal
permissible Lyapunov exponent �L = 2⇡

� , thus confirm-

ing the intuition that the SYK model is indeed holograph-
ically connected to a black hole.

Finally we mention various important extensions of the
SYK model developed in the recent literature. These
include models showing unusual spectral properties [36–
38], supersymmetry [39], quantum phase transitions of
an unusual type [40–42], quantum chaos propagation [43–
45], and patterns of entanglement [46, 47].

A. Box 2: Majorana zero modes and the Kitaev
chain

Majorana fermions have been originally introduced in
the context of particle physics as special solutions of
the celebrated Dirac equation [48] describing relativistic
quantum mechanics of spin- 1

2 particles. Unlike ordinary
fermions (e.g. electrons or protons) Majorana particles
lack the distinction between particle and antiparticle [17].
In the elementary particle physics the leading candidate
for a Majorana fermion is the neutrino but the experi-
mental evidence remains inconclusive at present [23].

In condensed matter physics Majorana fermions can
appear as emergent particles in various many-body sys-
tems. The most prominent of these are topological su-
perconductors in which Majorana particles often appear
as topologically protected zero modes [19–23]. A canon-
ical example of such a topological superconductor is the
Kitaev chain [49] which we now briefly review to illus-
trate the emergence of Majorana zero modes in a simple
setting.
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There are N � 1 sites, and many fermions. Each site may or may
not be occupied

Under time evolution, any two occupied sites may become
unoccupied, while two unoccupied sites become occupied
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There are N � 1 sites, and many fermions. Each site may or may
not be occupied

Under time evolution, any two occupied sites may become
unoccupied, while two unoccupied sites become occupied
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Can integrate out the coupling (Gaussian integrals). Left with a
bilocal in time effective action,

Ieff

N
= −1

2
log det (∂τ − Σ)+

1

2

∫
dτ1dτ2

(
Σ(τ1, τ2)G (τ1, τ2)− J2

4
G (τ1, τ2)4

)
.

At large N dominated by saddle,

Ġ (τ) = δ(τ) + J2
∫

dτ1 G (τ1)G (τ − τ1)3 .

Equivalently, the dominant Feynman diagrams at large N are
melons,

= +

This is a context in which Dynamical Mean Field theory is exact:
N interacting particles are replaced by one particle with a bilocal in
time action.
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For large J (infrared) there is emergent conformal invariance,
CFT1, G (τ) ∼ 1

|τ |1/2 .

Dimension of χ is 0 in the UV, 1/4 in the IR.

Large N correlation functions be computed (Kitaev ’15; Polchinksi &

V.R, ’16; Maldacena & Stanford, ’16; Gross & V.R., ’17)

Belief: should be an AdS dual
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Matrix models SYK Vector models

Large N Feynman 
diagrams planar melons bubbles

Difficulty hard easy/medium easy

A CFT example 𝒩=4 Yang-Mills
(4 dimensions)

SYK, at strong coupling
(1 dimension)

free/critical O(N) vector 
model (3 dimensions)

AdS dual theory string theory Vasiliev higher spin ? 

Gravitiational 
sector Einsetin gravity Jackiw-Teitelboim 

gravity

stress-tensor ⟷ h=2 mode (Schwarzian)
 ⟷ inapplicable

Gauge invariant 
operators

Anomalous 
dimensions

order 1 order 1/N

Dual of these 
operators

stringy modes tower of  scalars tower of massless 
higher spin fields 

Explicitly evaluating the integral yields the right-hand side: �(h, h34) is a ratio of gamma

functions, whose explicit form we have not written, and Fh
1234(⌧i) is identified as the conformal

block, and contains a hypergeometric function of the conformally invariant cross ratio of the

four times ⌧i, and depends on the dimensions of the external operators, h1, . . . h4, and the

dimension h of the exchanged operator. The conformal blocks form a basis, in terms of which

one can express a general four-point function,

hO1 · · · O4i =

Z

C

dh

2⇡i
⇢(h)Fh

1234(⌧i) . (4.4) {cBlock}

The contour C runs parallel to the imaginary axis, h = 1
2

+ is, and in addition has counter-

clockwise circles enclosing the positive even integers h = 2n. These are the principal and

discrete series, respectively, of SL2(R). 7

As an analogy, this expression for the four-point function is for the conformal group

SL2(R) what the Fourier transform is for the translation group. In particular, we may write

any function of x as,

f(x) =

Z
dp

2⇡
f(p)eipx . (4.5)

Here eipx are a complete set of eigenfunctions of the Casimir of the translation group @2
x,

while in (4.4), the conformal blocks Fh
1234(⌧i), with h running over C, are a complete set of

eigenfunctions of the SL2(R) Casimir. Any CFT1 four-point function is completely specified

by an analytic function ⇢(h). The poles and residues of ⇢(h) set the dimensions and OPE

coe�cients of the exchanged operators in the four-point function, as one can see by closing

the contour in (4.4).

For theories with O(N) symmetry, it is natural to study operators that have definite

transformation under the action of O(N). We will be interested in O(N) singlets, such as, 8

Oh =
1

N

NX

i=1

�i@
1+2n
⌧ �i . (4.6) {ST}

We will refer to such an operator as single-trace. One can make more O(N) invariant opera-

tors, by taking products. For instance, a double-trace operator is schematically of the form

Oh1
@2n
⌧ Oh2

.

7For discussion of this in the context of SYK, see [27, 31, 43], as well as [44, 45]. For a more general
discussion, see older work [46], and more modern work [47–50]. For a discussion of conformal partial waves,
see [51].

8This is schematic; some of the derivatives should act on the left �i as well as on the right �i, in a specific
way, so as to ensure the operator is primary. Also, we have not included operators with an even number of
derivatives, since their correlation functions will vanish, by fermion antisymmetry.

8

tr(X@kXY Y . . .) (1)

�a@(µ1 · · · @µs)�
a (2)

1

large (at large 't Hooft       
coupling)

tr(X@kXY Y · · · ) (1)

�a@(µ1 · · · @µs)�
a (2)

1
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“Harmonic Oscillator” of strongly coupled theories

Use a lattice of SYK “quantum dots” as a model of a strongly
correlated metal (Gu, Xi, Stanford, ’16; Song, Jian, Balents, ’17)

Quartic all-to-all interactions within a dot, and quadratic all-to-all
hopping terms between dots.
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Open questions

I When does large N naturally occur?

I What is classical analogue?

I How to improve on q body random coupling to get a more
realistic model? Have an effective action (of one fermion)
that is bilocal in time. Want to do perturbation theory about
maximally chaotic theory.
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Random coupling model of turbulence
A random coupling model was known (and solved!) much earlier,
in the turbulence literature (Kraichnan ’59, Betchov ’67, Hansen &

Nicholson ’81)

φ̇i =
N∑

j ,k,l=1

Jijklφjφkφl .

where the sum of Jijkl under cylic permutation vanishes. The index
i is a Fourier mode.

Can solve like SYK, via path integral (Hu, V.R., ’23).
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Direct interaction approximation
Assume 〈φi (t

′)φj (t)φk (t)φl (t)〉 vanishes if Jijkl set to zero.
Compute ∆φi when turn on Jijkl using linear response theory,

∆φi (t) = Jijkl

∫
dt ′ R(t, t ′)φj (t

′)φk (t ′)φl (t
′)

which gets inserted into,

Ġ (t1, t2) =
1

3!

∑

j,k,l

Jijkl〈φj (t1)φk (t1)φl (t1)φi (t2)〉 ,
Introduction  to  the Kraichnan Theory of Turbulence  225 

forms the integral of  their sum.  This is the output F0(t)  in the form of  a 
fluctuating electric signal.  The round boxes are multipliers that generate 
the bilinear terms.  They receive  inputs such as  F 2  and F3  from the left 
and deliver a signal C5,2,3F2F3  to the integrator.  Thus the coefficients are 
built into the multipliers.  The special input E3 has no equivalent  in the 
basic equations and is provided for  future usage. 
The N  integrators and  their 3M multipliers are  interconnected  in  the 

manner sketched in Fig.  6, which gives only the outlines  of  the complete 

FIG. 6. The general outlines  of  an imaginary  analog computer  that could  solve the 
system of  Eq.  (2.1).  Each integrator  has a special additional  input. 

circuit.  Through a cable, each integrator feeds a vertical line from which 
the signal  is directed  to the appropriate multipliers. 
The initial  conditions would  be  applied  by  charging  the N  capacitors 

contained  in  the integrators  to  the desired  voltages.  Thus the N  func
tions could be obtained, and we shall imagine that  they are recorded on a 
magnetic  tape for  future  reference.  These  functions would  correspond 
to a  particular path 011  the surface of  the IVdimensional sphere. 
In  principle,  the  computer  can  be  reset,  and  the  operation  can  be 

repeated without any difference.  This can actually be done with a digital 

Imaginary analog computer that solves the equations of motion (Betchov ’67) 14 / 24



Summary

Random Matrix Theory

Problem: How to understand the energy levels of heavy nuclei.
(Solving the Schrödinger equation is too di�cult.)

Wigner (1951): replace the Hamiltonian by a totally random
matrix,

P(H) ⇡ e�N trH2

FIG. 8. Photograph of Niels Bohr’s wooden toy model for compound–nucleus scattering. Taken from Ref. 10.

In his appeal to such statistical concepts, Bohr prepared the ground for Wigner’s work. In fact, RMT may be seen
as a formal implementation of Bohr’s compound nucleus hypothesis. At the same time, it is remarkable that the
concepts and ideas formulated by Bohr have a strong kinship to ideas of classical chaotic motion which in turn are
now known to be strongly linked to RMT. This is most clearly seen in Fig. 811 which is a photograph of a wooden
model used by Bohr to illustrate his idea. The trough stands for the nuclear potential of the target nucleus. This
potential binds the individual nucleons, the constituents of the target, represented as small spheres. An incoming
nucleon with some kinetic energy (symbolized by the billard queue) hits the target. The collision is viewed as a
sequence of nucleon–nucleon collisions which have nearly the character of hard–sphere scattering.

In the absence of a dynamical nuclear theory (the nuclear shell model had only just been discovered, and had not
yet found universal acceptance), Wigner focussed emphasis on the statistical aspects of nuclear spectra as revealed
in neutron scattering data. At first sight, such a statistical approach to nuclear spectroscopy may seem bewildering.
Indeed, the spectrum of any nucleus (and, for that matter, of any conservative dynamical system) is determined
unambiguously by the underlying Hamiltonian, leaving seemingly no room for statistical concepts. Nonetheless, such
concepts may be a useful and perhaps even the only tool available to deal with spectral properties of systems for which
the spectrum is su�ciently complex. An analogous situation occurs in number theory. The sequence of prime numbers
is perfectly well defined in terms of a deterministic set of rules. Nevertheless, the pattern of occurrence of primes
among the integers is so complex that statistical concepts provide a very successful means of gaining information
on the distribution of primes. This applies, for instance, to the average density of primes (the average number of
primes per unit interval), to the root–mean–square deviation from this average, to the distribution of spacings between
consecutive primes, and to other relevant information which can be couched in statistical terms.

The approach introduced by Wigner di�ers in a fundamental way from the standard application of statistical
concepts in physics, and from the example from number theory just described. In standard statistical mechanics,
one considers an ensemble of identical physical systems, all governed by the same Hamiltonian but di�ering in initial
conditions, and calculates thermodynamic functions by averaging over this ensemble. In number theory, one considers
a single specimen — the sequence of primes — and introduces statistical concepts by performing a running average
over this sequence. Wigner proceeded di�erently: He considered ensembles of dynamical systems governed by di�erent
Hamiltonians with some common symmetry property. This novel statistical approach focusses attention on the generic
properties which are common to (almost) all members of the ensemble and which are determined by the underlying
fundamental symmetries. The application of the results obtained within this approach to individual physical systems
is justified provided there exists a suitable ergodic theorem. We return to this point later.

Actually, the approach taken by Wigner was not quite as general as suggested in the previous paragraph. The
ensembles of Hamiltonian matrices considered by Wigner are defined in terms of invariance requirements: With every
Hamiltonian matrix belonging to the ensemble, all matrices generated by suitable unitary transformations of Hilbert
space are likewise members of the ensemble. This postulate guarantees that there is no preferred basis in Hilbert
space. Many recent applications of RMT use extensions of Wigner’s original approach and violate this invariance
principle. Such extensions will be discussed later in this paper.

It is always assumed in the sequel that all conserved quantum numbers like spin or parity are utilized in such
a way that the Hamiltonian matrix becomes block–diagonal, each block being characterized by a fixed set of such
quantum numbers. We deal with only one such block in many cases. This block has dimension N . The basis states
in Hilbert space relating to this block are labelled by greek indices like µ and � which run from 1 to N . Since Hilbert
space is infinite–dimensional, the limit N � � is taken at some later stage. Taking this limit signals that we do
not address quantum systems having a complete set of commuting observables. Taking this limit also emphasises the
generic aspects of the random–matrix approach. Inasmuch as RMT as a “new kind of statistical mechanics” bears
some analogy to standard statistical mechanics, the limit N � � is kin to the thermodynamic limit.
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Random Matrix Theory

Problem: How to understand the energy levels of heavy nuclei.
(Solving the Schrödinger equation is too di�cult.)

Wigner (1951): replace the Hamiltonian by a totally random
matrix,

P(H) ⇡ e�N trH2

FIG. 8. Photograph of Niels Bohr’s wooden toy model for compound–nucleus scattering. Taken from Ref. 10.

In his appeal to such statistical concepts, Bohr prepared the ground for Wigner’s work. In fact, RMT may be seen
as a formal implementation of Bohr’s compound nucleus hypothesis. At the same time, it is remarkable that the
concepts and ideas formulated by Bohr have a strong kinship to ideas of classical chaotic motion which in turn are
now known to be strongly linked to RMT. This is most clearly seen in Fig. 811 which is a photograph of a wooden
model used by Bohr to illustrate his idea. The trough stands for the nuclear potential of the target nucleus. This
potential binds the individual nucleons, the constituents of the target, represented as small spheres. An incoming
nucleon with some kinetic energy (symbolized by the billard queue) hits the target. The collision is viewed as a
sequence of nucleon–nucleon collisions which have nearly the character of hard–sphere scattering.

In the absence of a dynamical nuclear theory (the nuclear shell model had only just been discovered, and had not
yet found universal acceptance), Wigner focussed emphasis on the statistical aspects of nuclear spectra as revealed
in neutron scattering data. At first sight, such a statistical approach to nuclear spectroscopy may seem bewildering.
Indeed, the spectrum of any nucleus (and, for that matter, of any conservative dynamical system) is determined
unambiguously by the underlying Hamiltonian, leaving seemingly no room for statistical concepts. Nonetheless, such
concepts may be a useful and perhaps even the only tool available to deal with spectral properties of systems for which
the spectrum is su�ciently complex. An analogous situation occurs in number theory. The sequence of prime numbers
is perfectly well defined in terms of a deterministic set of rules. Nevertheless, the pattern of occurrence of primes
among the integers is so complex that statistical concepts provide a very successful means of gaining information
on the distribution of primes. This applies, for instance, to the average density of primes (the average number of
primes per unit interval), to the root–mean–square deviation from this average, to the distribution of spacings between
consecutive primes, and to other relevant information which can be couched in statistical terms.

The approach introduced by Wigner di�ers in a fundamental way from the standard application of statistical
concepts in physics, and from the example from number theory just described. In standard statistical mechanics,
one considers an ensemble of identical physical systems, all governed by the same Hamiltonian but di�ering in initial
conditions, and calculates thermodynamic functions by averaging over this ensemble. In number theory, one considers
a single specimen — the sequence of primes — and introduces statistical concepts by performing a running average
over this sequence. Wigner proceeded di�erently: He considered ensembles of dynamical systems governed by di�erent
Hamiltonians with some common symmetry property. This novel statistical approach focusses attention on the generic
properties which are common to (almost) all members of the ensemble and which are determined by the underlying
fundamental symmetries. The application of the results obtained within this approach to individual physical systems
is justified provided there exists a suitable ergodic theorem. We return to this point later.

Actually, the approach taken by Wigner was not quite as general as suggested in the previous paragraph. The
ensembles of Hamiltonian matrices considered by Wigner are defined in terms of invariance requirements: With every
Hamiltonian matrix belonging to the ensemble, all matrices generated by suitable unitary transformations of Hilbert
space are likewise members of the ensemble. This postulate guarantees that there is no preferred basis in Hilbert
space. Many recent applications of RMT use extensions of Wigner’s original approach and violate this invariance
principle. Such extensions will be discussed later in this paper.

It is always assumed in the sequel that all conserved quantum numbers like spin or parity are utilized in such
a way that the Hamiltonian matrix becomes block–diagonal, each block being characterized by a fixed set of such
quantum numbers. We deal with only one such block in many cases. This block has dimension N . The basis states
in Hilbert space relating to this block are labelled by greek indices like µ and � which run from 1 to N . Since Hilbert
space is infinite–dimensional, the limit N � � is taken at some later stage. Taking this limit signals that we do
not address quantum systems having a complete set of commuting observables. Taking this limit also emphasises the
generic aspects of the random–matrix approach. Inasmuch as RMT as a “new kind of statistical mechanics” bears
some analogy to standard statistical mechanics, the limit N � � is kin to the thermodynamic limit.

10

Bohr’s wooden toy model for compound nucleus scattering
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Random Couplings
Of course, the actual Hamiltonian is not a random matrix. How to
improve?

Two-body random Hamiltonian (French & Wong ’70, Bohigas & Flores,

’71)

H =
NX

i ,j ,k,l=1

Jijklc
†
i c

†
j ckcl

where Jij ;kl is drawn from a Gaussian distribution.

Can consider q-body interaction. Sum over all q gives random
matrix theory.
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Melons

The more interesting question is: how did Kraichnan (and Betchov
and Hansen and Nicholson) get this equation?

To stress how impressive this is: for SYK, we know that melons
dominate at large N from the path integral (replica trick, etc.).
Kraichnan’s work was in the 50s, long before any of this.

26 / 35

For large J (infrared) there is emergent conformal invariance,
CFT1, G (⌧) ⇠ 1

|⌧ |1/2 .

Dimension of � is 0 in the UV, 1/4 in the IR.

Large N correlation functions be computed (Kitaev ’15; Polchinksi &

V.R, ’16; Maldacena & Stanford, ’16; Gross & V.R., ’17)

Belief: should be an AdS dual
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“Harmonic Oscillator” of strongly coupled theories

Use a lattice of SYK “quantum dots” as a model of a strongly
correlated metal (Gu, Xi, Stanford, ’16; Song, Jian, Balents, ’17)

Quartic all-to-all interactions within a dot, and quadratic all-to-all
hopping terms between dots.

11 / 24

large N
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Tensor Models

Closely related to SYK is the tensor model (Gurau ’09, Witten ’16,

Klebanov & Tarnopolsky ’16),

S =

∫
dτ

(
1

2
ψabc∂τψabc +

g

4
ψabcψadeψfbeψfdc

)

At leading order in 1/N, it has the same Feynman diagrams as
SYK, and so the same physical properties.

16 / 24



• Vector model:                                                           

• Matrix model:                                                           

• Tensor model:                                                        

Large N Models
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Ocean Waves
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I For small amplitude waves, within some range of momenta, it
is both observed and theoretically predicted that nk ∼ k−4.

I This is known as weak wave turbulence (unrelated to
hydrodynamics turbulence).

I Similar effects occur in many other nonlinear systems,
including reheating in the early universe and heavy ion
collisions (prethermalization) (Micha & Tkachev, 04; Berges, Heller,

Mazeliauskas, Venugopalan, ’21)

Figure 3

Typical surface wave elevation measurements: (a) capacitive wire gauge, (b) 3D wave field reconstruction by Fourier
Transform Profilometry (FTP), (c) 2D spatial profile, (d) 3D Diffusing Light Profilometry (DLP), and (e) 3D stereo-PIV.
Panels adapted from (a) Cazaubiel et al. (2019b), (b) courtesy from P. Cobelli, (c) Nazarenko et al. (2010), (d) courtesy
from J.-B. Gorce, (e) Aubourg et al. (2017) with permission from (a,d,e) American Physical Society.

nonlinear (typically ε ! 0.05 − 0.1). To decrease capillary viscous dissipation, researchers

have performed experiments with mercury (Falcon et al. 2007b,a, 2008, Ricard & Falcon

2021a), or with liquid hydrogen (Brazhnikov et al. 2002, Kolmakov et al. 2009). A direct

estimation of the nonlinear timescale is not straightforward and was accomplished only in

a few cases (see Section 5.1). The timescale separation was found to be well validated

experimentally for gravity wave turbulence (Deike et al. 2015, Falcon et al. 2020) and for

gravity-capillary wave turbulence (Cazaubiel et al. 2019b), as well as numerically for pure

capillary wave turbulence (Deike et al. 2014b) [see also Deike et al. (2013) and Miquel et al.

(2014) for such tests in other experimental wave turbulence systems]. However, when the

finite-size effects are significant, the nonlinear and dissipative timescales are found to be

independent of the scale, contrary to weak turbulence predictions (Cazaubiel et al. 2019b).

6. EXPERIMENTAL METHODS

Water waves are commonly generated by a localized forcing using a wave maker made of one

or multiple independently controlled paddles (see Figure 3). Injected power into the fluid

can be measured (Falcon et al. 2008), as can the energy flux P , indirectly (see Section 7.2).

6.1. Single-Point Measurements

In field observations, surface wave elevations are usually measured by buoys, lidar or mi-

crowave radars. In laboratory experiments, resistive or capacitive wire gauges are widely
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FIG. 3: (color online). Power spectra of the surface wave
height for two different driving voltages Urms = 0.2 and 0.9
V (from bottom to top). The frequency band is 0 ≤ f ≤ 6 Hz.
Dashed lines have slopes -4.3 and -3.2. Inset: The frequency
band is 0 ≤ f ≤ 4 Hz, and Urms = 0.9 V. Dashed lines had
slopes of -6.1 and -2.8.

i.e. to a critical frequency, fc =
√

g/2lc/π, where g is
the acceleration of gravity. For mercury, lc = 1.74 mm
and fc ! 17 Hz corresponding to a wavelength of the
order of 1 cm. The insets of Fig. 3 and Fig. 4 show a
correct agreement in the case of a narrow driving fre-
quency band. We also observe that the cross-over fre-
quency increases with the driving amplitude and with
the width of the driving frequency band (see the inset
of Fig. 4). This can be due to the fact that the above
estimate of fc is only valid for linear waves. The capil-
lary length cannot be significantly changed using other
interfaces between simple liquids and air. It is at an in-
termediate scale between the size of the experiment and
the dissipative length. In this laboratory-scale experi-
ment, this limits both the gravity and capillary regimes
to less than a decade in frequency. With laboratory-scale
experiments, we can study full range gravity waves with
a liquid-vapor interface close to its critical point and full
range capillary waves in a micro-gravity environment.

Surface wave turbulence is usually described as a con-
tinuum of interacting waves governed by kinetic-like
equations in case of small nonlinearity and weak wave
interactions. WT theory predicts that the surface height
spectrum Sη(f), i.e. the Fourier transform of the au-
tocorrelation function of η(t), is scale invariant with a
power-law frequency dependence. Such a Kolmogorov-
like spectrum writes

Sη(f) ∝ ε
1
2

(
γ
ρ

) 1
6

f− 17
6 for capillary waves [11],

Sη(f) ∝ ε
1
3 gf−4 for gravity waves [13],

(1)

where ε is the energy flux per unit surface and density
[Sη(f) has dimension L2T and ε has dimension (L/T )3].
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FIG. 4: Slopes of surface-height spectra for gravity (full sym-
bols) and capillary (open symbols) waves for different forcing
band widths and intensities: (◦) 0 to 4 Hz, (#) 0 to 5 Hz and
(!) 0 to 6 Hz. Power-law exponents of gravity wave spectrum
(−·) and capillary waves spectrum (−−) as predicted by WT
theory (Eq. 1). Inset: Cross-over frequency between gravity
and capillary regimes as a function of the forcing intensity
and band width.

In both regimes, these frequency power-law exponents
are compared in Fig. 4 with the slopes of surface height
spectra measured for different forcing intensities and
band widths. The experimental values of the scaling
exponent of capillary spectra are close to the expected
f−2.8 scaling as already shown with one driving fre-
quency [7, 8, 10] or with noise [10]. Figure 4 shows that
this exponent does not depend on the amplitude and the
frequency band of the forcing, within our experimental
precision. For the gravity spectrum, no power-law is
observed at small forcing since turbulence is not strong
enough to hide the first harmonic of the forcing (see
Fig. 3). At high enough forcing, the scaling exponent of
gravity spectra is found to increase with the intensity
and the frequency band (see Fig. 4). For gravity waves,
the predicted f−4 scaling of Eq. (1) is only observed for
the largest forcing intensities and band width (see Fig.
4). The dependence of the slope of the gravity waves
spectrum on the forcing characteristics can be ascribed
to finite size effects [22]. Similar results in the gravity
range have been recently found in a much larger tank
with sinusoidal forcing [23].

We finally consider how those spectra scale with the
mean energy flux ε ≡ 〈I〉/(ρSP ) where 〈I〉 is the mean
power injected by the wave maker and SP is the area of
the wave maker. With given σV , we have first check that
〈I〉 in proportional to SP and decreases by a factor 13
when mercury is replaced by water. Our measurements
also show that 〈I〉 ∝ σ2

V with a proportionality coeffi-
cient of order 10 W/(m/s)2 (see the inset of Fig. 5). We

(Falcon & Mordant ’21)
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Can describe by (Hasselmann ’62, Zakharov ’65),

H =
∑

p

ωpa
∗
pap +

∑

p1,p2,p3,p4

λp1p2p3p4a
∗
p1
a∗p2

ap3ap4 + . . . .

Assume weak nonlinearity to derive a wave kinetic equation
(analog of Boltzmann equation). Find there is a
far-from-equilibrium stationary solution nk ∼ k−γ .

These are classical systems with many degrees of freedom, that are
chaotic, and have a statistical description.

Claim: QFT is the correct framework to understand these systems.
Gives novel and challenging QFTs, in a state that is stationary
(constant energy flux), but is neither the vacuum nor thermal.

V.R., M. Smolkin, 2203.08168; V.R., M. Smolkin, 2212.02555; V.R,

D. Schubring, Md. S. J. Shuvo, M. Smolkin, 2308.00740; V.R, G. Falkovich,

2308.00033
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Classical stochastic = Quantum

〈O(a)〉 =

∫
Df P [f ]O(a) ,

where ak (t) satisfies the equations of motion for the particular fk picked
from P [f ].

Insert a delta function, to enforce the equations of motion,

〈O(a)〉 =

∫
DaDf P [f ]O(a) δ(eomf )

where eomf = ȧk + i δH
δa∗

k
− fk (t) + γkak . Write the delta functionals as an

integral,

δ(eomf ) =

∫
Dηe i

∫
dt

∑
k ηk (t)eom

∗
f

then do the integral over forcing, then integrate out the Lagrange
multiplier (η),

〈O(a)〉 =

∫
DaO(a) e−

∫
dt L , L =

∑

k

|eomf =0|2
Fk

.
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Wave kinetics, to one-loop
In standard framework, no effective tools for going to higher order.
But it is necessary, since nonlinearity gets strong either in the UV
or the IR.
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dn1
dt

= 16π
∑

2,...,4

δ(ωp1p2;p3p4)λ21234

4∏

i=1

ni

( 1

n1
+

1

n2
− 1

n3
− 1

n4

)


1 + 4

∑

5,6

λ1256λ5634
λ1234

n5+n6
ωp1p2;p5p6

+ 16
∑

5,6

λ1635λ2546
λ1234

n5−n6
ωp4p6;p2p5
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Interpretation

I Take a tank of water. No waves. Create and scatter two
waves, which turn into two other waves. Interaction strength
λ1234.

I Now take a tank with a turbulent state. Repeat – create and
scatter two waves. But now they are interacting with
background of waves in turbulent state. Changes the effective
interaction strength.
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Summary

1. We can compute multimode correlation functions and the
kinetic equation systematically, perturbatively in the
nonlinearity

2. The corrections to the standard (leading order) kinetic
equation can be much larger than naively expected (i.e. weak
turbulence can break down earlier than expected)

3. The behavior (divergences) of corrections depend on the
asymptotics of the interaction λ1234

4. The appropriate renormalization framework for this setup – a
far-from-equilibrium constant flux state, with forcing in the IR
and dissipation in the UV (i.e. energy sinks in the UV and IR)
– is an open problem
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