INTT Weekly Meeting

Joseph Bertaux

Purdue University

February 7, 2024

Current State of Online Dead Channel Map

My recent PR

- Adds comparators for the RawData_s, Online_s, and Offline_s structs used to wrap position information from hits
 - This allows them to be easily used as keys for std::map's and std::set's
- Adds member functions to the InttCombinedRawDataDecoder to populate such a set from a CDBTTree file
- Identification based on inclusion in an std::set<InttNameSpace::RawData_s>
 - Search is $\mathcal{O}(\ln(N))$ with N being the number of masked channels
- CDBTTree based loading; branches for the fields of RawData_s:
 - felix_server (ROC)
 - felix_channel (FEE)
 - chip
 - channel

Channel List Loading

Code snippet that shows how the CDBTTree is loaded. Note that name is an std::string passed as an argument, and m_HotChannelSet is a member variable of type std::set<InttNameSpace::RawData_s>

From the current combined raw data decoder

Hot Channel Masking

Since the InttCombinedRawDataDecoder now maintains a member set m_HotChannelSet of hot channels to mask, the only additional step is to add a guard clause inside the process_event member function

```
if ( \, \mathsf{m\_HotChannelSet.find} \, ( \, \mathsf{raw} \, ) \ != \ \mathsf{m\_HotChannelSet.end} \, ( \, )) \, \\ continue \, ;
```

which has been added to the combined raw data decoder

Current State of Offline Dead Channel Map

- Relevant software modules:
 - Dead Map Loader
 - Dead Map Class
 - Simulation Macro
- These are based on an XML format
 - Strip ID is wrapped in a formatted string and stored as XML string variable
 - Form("INTT_%d_%d_%d_%d", ladder_phi, ladder_z, strip_z, strip_phi)
 - Offline/tracking convention
 - I believe this comment was left by Jin; here "strip_z" is most like the member field "strip_y" in the Online_s, and "strip_phi" is most like Online_s's "strip_x"
 - Existing sPHENIX tools to produce such XML files quickly (phparameter/PHParameters)
- Pointed out that this is inefficient use of disk memory
 - (when compared to ROOT TTrees)

Offline Dead Channel Map Production

- Recently wrote a simple code that produces such xml files, example.cc
 - Note the dependencies on phool and phparameter libraries
- Haven't merged this to the main INTT branch, since it only servers to prototype things with minimal working examples

Misc. Progress

- For a period my analysis was setback b/c of an update to the event combining
 - Introduced stricter BCO matching against the GL1
 - Requires GL1 files in addition to INTT files
 - Usually corresponding BCOs (in INTT and GL1) were off by one beamclock
- Chris implemented a fix that allows for a BCO matching tolerance
 - SetBcoRange in the SingleInttPoolInput class
- I've incorporated and tested this in my macro
 - Doing SetBcoRange(2) seems to work

Misc. Progress (Cont'd)

- Wrote a Fun4All module to directly produce the normalized hitrates needed as input for my channel classification
 - Previous workflow was to produce event-based TTrees and analyze all hits, then iterate over the trees to compute the hitrates
 - Circuitous and wasteful use of disk memory
- Tested the hitrates with a few different values for SetBcoRange(), being 1, 2, 3, and 4.
- Found hitrates were identically the same for 2, 3, and 4
- Interestingly hitrates for 1 were slightly higher
 - In any case, matching seemed to stable with 2 beamclock tolerance (further increase did not change matching)
 - I will use 2 for further analysis work

Future Work

- Produce hot channel maps for both Online and Offline workflows
 - Am currently capable of producing the CDBTTrees used for the Decoder, or the XML files used in simulations
 - I can translate any existing maps people have to these formats
- Continue Lambda C analysis
- Help with the implementation of survey geometry in simulation
 - Will likely standardize survey data to CDBTTree as well
 - Mostly trivial changes

Future Work (Cont'd)

- Incorporating survey geometry into GEANT
 - Chris pointed out that the staves can be put into assembly volumes
 - Assembly volumes can act as intermediate/wrappers that represent the half-barrels
 - Then use the volumes to model the gap when closing
 - This will require extra analysis to find the best-fit barrel position, but
 - This will need to happen anyway to properly model inactive area (long term/future implementation)
 - Reduces the total amount of work in implementation to be worth doing
 - Assembly volume (or appropriate volume type) doesn't need to worry about overlap