Forward ECAL FEB power and DC/DC work towards that

G. Visser Indiana University

2/15/2024 ePIC DAQ/Electronics meeting

- 468 FEB in all
- water cooled (about 4 W / FEB)
 - power losses conducted into PCB & water cooling are not so important, although of course we do want to minimize
 - main goal is to reduce cable size and power losses in cables (or elsewhere) that ultimately get into airspace & SiPM boards
- SiPM signals very small (15 MeV \approx 90 μ V), but very low impedance / not easily disturbed
 - EMI risks from DC/DC circuits are moderate with care we can easily avoid troubles
- radiation tolerance: $3 \times 10^{11} \text{ n/cm}^2$ (1 MeV eq.)
- load voltage & current estimates:

voltage	current	uses	scheme
+52 V	<32 mA (TBD)	SiPM bias regulators	external
+3.3 V	240 mA	preamps, ADC driver, etc.	LDO from external, or local buck
+2.5 V	small	FPGA	LDO from +3.3 V today's fo
+1.8 V	1.2 A	ADC's	local buck from +15 V external
+1.0 V	200 mA (TBD)	FPGA	LDO from +1.8 V
–1.5 V	100 mA	preamps	LDO from external

- so called "synchronous buck" (low side switch FET, not diode), for decent efficiency at $V_{OUT} < 2 V$
- $f_{SW} \ge 2$ MHz capability, for practical air-core inductor
- internal switch FET's, for compact, simple, lower EMI board design
- I_{OUT} capability 1.5 to 4 A
 - too much is not good: capacitance of switches wastes power, and low current sense gain means either noisy operation or comparatively high inductor ripple current (which wastes power and raises EMI risks)
- V_{IN} capability \geq 12 V, as high as possible up to ~48 V would be interesting
 - In practice, efficiency suffers at higher V_{IN} and (generally speaking) with higher V_{IN,MAX} capability. But input current reduction, not efficiency of the DC/DC, is the priority goal. (Assuming board cooling is "easy".)
 - For many parts on market, especially ones with simple peak current control, the minimum on-time seriously limits V_{IN} under the constraint of low V_{OUT} and high frequency
- customizable loop gain, i.e., a COMP/ITH pin or equivalent, is best
 - besides enabling optimal noise and transient response, this can be used to decrease output ripple 5×
 - unfortunately, in the name of simplifying the application circuit and the design process, more than half of modern small DC/DC chips have internally fixed loop gain
- Of course we want high efficiency, although power loss well coupled to cooling water is not really a big concern
- Ability to use external reference voltage, simply, *might be helpful for radiation tolerance*

Candidate DC/DC chips

(again, for the fwd ECAL 1.8 V 1.2 A load case, for the sake of discussion)

P/N	I _{OUT,MAX} , A	V _{IN,MAX} , V @ 1.8 V out, 2 MHz	f _{sw} range, MHz	control topology	comments
LTC3600	1.5	15	0.2 - 4.0	valley current	eval board in hand; direct external ref possible
LTC3601	1.5	15	0.8 - 4.0	valley current	eval board in hand (blown); high high frequency efficiency claimed
LTC3626	2.5	20	0.5 - 3.0	valley current	eval board on order
LT8622SA	2.0	18	0.3 - 6.0	?	NDA needed (working on it); direct external ref possible
TPS543320	3.0	18	0.5 – 2.2	emulated peak l _L	>85% efficiency at 1.8 V 1 A 1.5 MHz (w/ iron powder inductor)
other COTS ?					
bPOL12V	4.0	11 (maybe 12)	1.0 - 3.0	peak current	eval board in hand; availability concerns; rad hard
bPOL48V + EPC2152	15 (GaN)	22.5	0.5 - 3.0	duty cycle	external FET; loop gain constrained; rad hard

An ideal way to keep conducted noise on output to a minimum is to use 2nd order circuit. Basically, the output filter is absorbed into the control loop. Voltage drop on output filter is regulated out.

a layout example (HELIX TOF readout board, G. Visser)

Of course, a simple standard buck regulator can be used with an output filter outside the loop. This is just "better" but not the only way.

Phase shift changes significantly \rightarrow loop gain needs to be different if you do this – "standard" loop gain won't work... Needs external compensation components to tweak.

inductors

There are a few styles of air-core inductor to choose from. We need something compact, cheap, perhaps COTS, and with low stray magnetic field.

A copper shield is probably needed in any case. Shield might be a 2nd PCB as mezzanine (incorporating other functions besides shielding).

Solenoid: cheap/COTS but large stray field Toroid: excellent low stray field, expensive to wind Integrated toroid in PCB: large, needs thick PCB, resistance is high

Two solenoids adjacent anti-parallel: cheap/COTS yet lower stray field \rightarrow proposed scheme

Abracon AIAC-4125C series ought to work well for <3.5 A load applications. Measured inductance and ESR (and SRF) looks excellent. DCR only $2 - 3 \times$ that of iron powder inductors. Worked well in LTC3601 and LTC3600 tests!

Shield tested: As expected, it reduces inductance a little. ESR unaffected. Won't be a problem...

Direct measurement of inductor current at various loads:

- Nothing unusual, the air core inductor performs perfectly normally.
- Incidentally though, the LTC3600 lowers its frequency at light load.
- A quirk to be kept in mind, especially for loop gain design. No real problem.

LTC3600 efficiency measurements w/ air-core inductors

1.8 V out

2x AIAC-4125C-R380J inductor, 2.54 MHz, various loads

1.02 A load, various inductors & frequencies

efficiency is reasonable (of course room for improvement)

input voltage, V

LTC3600 – other evaluations

- output ripple (on eval board): 40 mV p-p, see backup slides
 - certainly unacceptable
 - but just as certainly improvable with a better board design and
 I/O filters added <2 mV p-p should be achievable
- output noise and subharmonics (everything <85% of f_{SW}): 125 μ V rms
 - this is really excellent, about the best I've ever seen
 - very important low frequency noise 'impossible' to filter
- output regulation: relatively poor ~1%
 - probably, we don't really care, our load is ~constant
 - anyway the trouble seems to be in the reference voltage, which could be overridden externally

- validated all aspects of LTC3600, except radiation (and magnetic field)
 - looks good for up to 1.5 A applications, although efficiency not excellent
- I would like to get this eval board into radiation test as soon as feasible... (help...?)
- I think we have a good, low cost, small size solution for air core inductors for this current range
- will also evaluate at least the LTC3626 and TPS543320
- bPOL12V can be considered, if we are comfortable with availability
 - 11 V input range is not ideal though

backup – some details for reference, in case anyone finds something useful

LTC3600 eval board output ripple: 40 mV p-p @ 20 MHz BW, 70 mV p-p @ 500 MHz BW

LTC3600 eval board output spectrum: clean, no subharmonics, low noise

ripple/noise measurement

inductor measurements

S11 measurement with network analyzer (of course ASSUMES inductor is linear – for air core it is, for iron core approximately so)

low frequency ESR is just the DC resistance – good agreement with DMM measurement

