

On the powering of the ePIC MPGD detector frontends

irakli.mandjavidze@cea.fr

ePIC eDaq working group 15/Feb/2024

• Preamble

- \rightarrow Power distribution variants reviewed within the context of the VTRX+ use in MPGD FEBs
- \rightarrow Several frontend organization options studied for CyMBaL tracker based on system requirements
 - Bandwidth and functional considerations
 - Mechanical, radiation, magnetic field constraints
 - Power needs
 - A back-of-the-envelope python script for rapid estimates of per channel power, power distribution cable cross sections, etc.
- \rightarrow Studies applicable to all MPGDs
- \rightarrow A lengthy detailed set of transparencies can be shared with interested parties

- Reminder of the MPGD environment
- Power distribution options
- Power requirements of some frontend organizations

A CyMBaL tracker reminder to illustrate MPGD environment

Spatial constraints for inner barrel cylindrical tracker

• Space is stringent: 6 cm

cea irfu

 \rightarrow Detectors, gas pipes, HV cables

SVT MPGDs ToF (fiducial volume)

On detector frontend electronics

 \rightarrow FEBs + LV distribution + RDO interface cabling + cooling

5

^{cea} ^{irfu} Example of CyMBaL: one of the possible configurations under study

256-channel FEBs

32-channel µcoaxial cables

- Still under torment of optimization
 → Just a snapshot to give an idea
- 32K channels
- 128 256-channel FEBs
 - \rightarrow Only central detector FEBs visible
 - Peripheral FEBs in a row bellow
 - Or in a second row
- 32 1024-channel RDOs
 - \rightarrow 4 FEBs per RDO
- Where to place RDOs not really clear
 - \rightarrow Electrical FEB-RDO interface : 5-6 m
 - 16 on either side of Barrel
 - Can probably be placed further away using driver-buffers but potential issues of ground loops and noise pickup
 - \rightarrow Optical FEB-RDO interface : no limit
 - Attractive option

Inner detector fronted environment

- Restricted material budget including for cooling
- Magnetic field
- Radiation
- Example of CyMBaL tracker environment
 - \rightarrow TID after 10 years :
 - \rightarrow Neutron fluence after 10 years:
 - \rightarrow 20 MeV proton flux:
 - \rightarrow Magnetic field:

10 krad 10¹¹ n_{eq} / cm² 100 particle / cm² / s 1.9 T

CyMBaL is here

• Similar radiation and magnetic field environment for other MPGD detector frontends

Power distribution options considered

(Note: serial power option has not been studied)

Power distribution: a reminder from the past

• Just for fun: presented on 18 may, 2022, during SRO-X workshop

→ https://indico.jlab.org/event/519/contributions/9563/attachments/7748/10855/220518_SroX_FrontEnd_IM.pdf

cea irfu

8

FEB power distribution options : DC-DC

- DC/DC-based LV distribution: to be magnetic field tolerant
 - \rightarrow Remote power supply distributes 12V with a low voltage drop over 20 m cables
 - Say less than 0.5V
 - The lower the drop the lower the power dissipation in cables but the large is their cross-section

- \rightarrow Higher efficiency
- \rightarrow Low cross-section power cables
- \rightarrow Less overall^{*} mW/ch

*Overall : Power supply W / nb of channels includes loses in cables, regulator inefficiencies

- \rightarrow DC/DC regulators might be bulky and a source of EMI
 - Space + extra material for shielding
 - Not clear if 80% efficiency can be really achieved

FEB power distribution options : LDO

• LDO-based LV distribution

- \rightarrow Remote power supply distributes 2.1V and any auxiliary voltages with a low voltage drop over 20 m cables
 - Say voltage drop is < 0.5V
 - The lower the drop the lower the power dissipation in cables but the large is their cross-section
- \rightarrow Low cross-section sense wires for remote power regulation

- \rightarrow Lower efficiency
- \rightarrow High cross-section power cables
 - Space due to thick cables
- \rightarrow High overall^{*} mW/ch

*Overall : Power supply W / nb of channels includes loses in cables, regulator inefficiencies

Examples of power requirements of some MPGD FE organization options

²²² ^{irfu} FEB with no on-board intelligence and electrical interface

Passive 8-lane twinax cable FireFly from Samtec

• FEB

- \rightarrow Radiation hardened ASICs
- \rightarrow Low active component count: minimal power consumption
 - ~30-35 mW / channel
 - 1 mm² (DC/DC + LDO) or 5.6 mm² (LDO only) wires to power a FEB
- RDO : most probably MPGD specific hardware
 - \rightarrow No buffer-drivers: is there any suitable place within 5-6 m?
 - \rightarrow Buffer-drivers: space constraint relieved with some extra power consumption but
 - Ground loops with noise pickup over 20 m long signal cables

Merged FEB / RDO with optical VTRX+ interface

- On-FEB RDO in a harsh environment
- Merged FEB / RDO : Worst power consumption scenario
 - \rightarrow 50% increase compared to a FEB with electrical RDO interface
 - 45-50 mW / channel
 - 1.5 mm² (DC/DC + LDO) or 8 mm² (LDO only) wires to power FEB
- An RDO per detector module : 4 FEBs / RDO
 - \rightarrow ~11% more power compared to a FEB with electrical RDO interface
 - 33 37 mW / channel
 - 1 mm² (DC/DC + LDO) or 6 mm² (LDO only) wires to power FEB
- Cooling and its additional infrastructure !
- SEU effects need to be understood, acceptable failure rates to be agreed on
- Powering FPGA requires "whole lotta" different voltages : (3V3), 2.5V, (1.8V), 1.2V, 1V, (0.9V)
 - \rightarrow Deriving them from a single auxiliary power source may be inefficient
 - \rightarrow Avoid mixing analog digital power sources

• FEB

 \rightarrow ASICs directly connected to 4-lane bidirectional parallel optic FireFly transceivers

- Single Rx line encoding clock, sync run-control and asynchronous slow control and monitoring commands
- \rightarrow Low active component count: low power consumption
 - ~35-37 mW / channel 15% increase compared to a FEB with electrical RDO interface
 - 1 mm² (DC/DC + LDO) or 6 mm² (LDO only) wires to power FEB

• RDO : common hardware

• ASICS:

cea irfu

- \rightarrow 32-channel Sampa: 10-20 mW/ch
 - Depending on sampling rate (5-10 MSPS) and DSP activity (e.g. off-on)
- \rightarrow 64-channel VMM: 16 mW/ch

• Frontends

- \rightarrow 160-channel FEC of ALICE TPC
 - 5 SAMPAs, 2 GBTx, 2 VTRx, LDOs
 - In magnetic field
- \rightarrow 256-channel FEE of sPHENIX TPC/TPOT 19W / 75 mW/ch
 - 8 SAMPAs, FPGA, 2 optical transceivers, LDOs
 - In magnetic field
 - Power distribution to be checked
- \rightarrow 512-channel MMFE8 of ATLAS NSW
 - 8 VMMs, ROC ASIC, SCA, FEAST DC/DCs
 - Electrical interface
 - Out of magnetic field
 - 11V distributed no need for large cross-section cables
- \rightarrow 512-channel FEU of Clas12 MVT/FTT/Bonus $\,$ 20W / 40 mW/ch $\,$
 - 8 Dreams, ADC, Virtex6 FPGA, 1 optical SFP, 1 GE SFP, LDOs
 - In magnetic field
 - 4.5V distributed to 8 FEUs over 5m with 16 mm² wires

16W / 31 mW/ch

	Parameter	Analog supply	Digital supply
16W / <mark>100 mW/ch</mark>	Supply voltage (V)	4.9 (5.2)	4.1 (4.4)
	Cable cross-section (mm ²)	150	300
	Current (A)	83	133
	ΔU in cables (V)	0.65 (0.92)	0.9 (1.2)
	Total power per sector (W)	407 (432)	545 (585)

Discussion

- Frontend power distribution in magnetic field is challenging
- The use of magnetic field tolerant high efficiency DC-DC regulators is an attractive option
 - $\rightarrow\,$ Assuming they have a low form factor and represent low EMI source
 - ightarrow Possibility to cascade regulators in a step-down chain having last stage close to frontend
- Direct distribution of low voltage may require bulky cables in a limited space
 - \rightarrow Shielding of the cables will make them even more thicker and rigid
- COTS power regulators may still suffer from SEUs even in mild radiation environment
 - \rightarrow Especially errors in "Enable" circuitry may result in temporary power-cut of some parts within a frontend
- Additional complexity may come from FPGAs with their diversity of power sources
- Some numbers :
 - \rightarrow MPGD frontends : ~600
 - Risk mitigation MPGD disks : ~200 FEBs
 - $\rightarrow\,$ Assume 256-channel FEBs
 - \rightarrow Assume 30 mW/channel
 - $\rightarrow 4.5 \text{ kW}$
 - 6 kW with risk mitigation
- Common approach is more than welcome
 - $\rightarrow\,$ Including common procurement

Backup

• FEB

- \rightarrow Number of rad-hard FE ASICs
- \rightarrow As low power consumption as possible
- $\rightarrow\,{\sim}2$ T magnetic field

• RDO

- \rightarrow Middle to low-end FPGA
- \rightarrow Distribute clock and synch commands to FEBs
- \rightarrow Configure and monitor of FEBs
- \rightarrow Receive data from several FEBs, format them and convey to DAMs

• RDO \leftrightarrow FEB link

- → Downstream: clock & sync commands, configuration and monitoring requests
- → Upstream: data, configuration and monitoring responses
- \rightarrow Over copper: 5-6 meters
 - RDO is in a restricted area inside the detector
 - Size / place / power / cooling
 - Ground loops
- \rightarrow Over fiber: no limit
 - RDO in a low restriction area in cavern

• FE ASICs are directly interfaced to VTRX+

- \rightarrow Downlink with embedded clock / sync / async data distributed with high fidelity fan-out
- \rightarrow Requires an "innovative" ASIC interface
 - Working on CDR circuitry for Salsa

• FEB

- \rightarrow Radiation hardened ASICs
- \rightarrow Minimal power consumption after electrical interface option: only VTRX+ consumption added
 - ~ 32-35 mW / channel 8% increase compared to a FEB with electrical RDO interface
 - 0.9 mm² (DC/DC + LDO) or 5.8 mm² (LDO only) wires to FEB
- RDO : common hardware

CERN VTRX+

Example: powering of a FEB with passive electrical RDO interface

- \rightarrow Moderate radiation environment, space & power stringent
- RDO \leftrightarrow FEB
 - \rightarrow Clock & synch commands on FEB fan-out or multi-drop
 - \rightarrow I2C daisy chain
 - \rightarrow Data single or several uplinks per ASIC

• FEB

- \rightarrow No on-board intelligence, no board-level data aggregation
- → High fidelity fan-out candidates: Rafael ASIC or a development based on EICGENR&D_2022_0665nm PLL
 - Used solely for clocks and commands; not for I2C
- On detector FEB: best option for S/N
 - \rightarrow Difficult for all the rest

FDM – fiber distribution module

(patch panels, etc.)

²²² ^{irfu} FEB with electrical RDO interface and no on-board intelligence

Number of ASICs per FEB can be adapted according to detector modularity and space constraints
 → As well as lanes of the electrical FireFly interface

• FEB to RDO distance limited to 5-6 m : where to place RDOs in this range?

<u>cea</u> irfu

Powering within magnetic field

- Assuming 64-channel Salsa with ~1 W power consumption @ 1.2 V
 - \rightarrow For simplicity, 1 A per ASIC
- Clean power will require a radiation tolerant ultra LDO linear regulator
 - \rightarrow e.g. commercial TPS7H1101A-SP from TI <u>https://www.ti.com/product/TPS7H1101A-SP</u> space grade
 - → e.g. community LDO used for CMS HgCal frontends https://cds.cern.ch/record/2797683 HL LHC grade
 - \rightarrow Or whatever proposed by other subsystems
- Power distribution may require magnetic field tolerant high efficiency DC/DC regulators
 - \rightarrow e.g. community bPOL12V from CERN HL LHC grade and 4T tolerance
 - Microsoft Word bPOL12V_V6 datasheet V1.6.docx (cern.ch)

- Question: is there a common effort for LV distribution?
 - \rightarrow A centralized group taking care to provide V_{IN} in a "uniform" way wherever possible
 - \rightarrow And in case CERN components will be the choice, for their inventory and procurement

2700

Power distribution: about DC/DC regulators

- The use of magnetic field tolerant DC/DC converters is attractive for efficient powering
- However, they might be bulky
 - \rightarrow One of the designs integrating bPOL12V from CERN requires ø12 mm and H 3mm coils
- And they might be a source of EMC noise requiring a special shielding
 - \rightarrow Extra material budget in the vicinity of trackers if DC/DC converters sit directly on FEBs
- Shell they be placed on dedicated boards not too far from FEBs?

Next page

irakli.mandjavidze@cea.fr

²²² ^{irfu} Power distribution option for a 1024-channel CyMBaL module: 4 FEBs

- A 256-channel FEB with passive electrical RDO interface consumes 7.5 W
 - \rightarrow With on-board or close-to-board DC-DC converters
 - 12V is distributed to DC-DC converters to produce 1.5V for LDOs to produce 1.2V for ASICs

 \rightarrow Assume DC/DC – LDO connection induces no more than 0.5V drop: DC/DC output set @ 2V

■ Power dissipation in wires: max 0.5 x 4 = 2 W: what should be the wire cross-section for a given length?

DC-DC to LDO Distance m	Wire cross section mm ²	Comment
0.3	0.1	Not clear if there is a place for DC/DC power board
1	0.3	Noise pickup on 1 m long cables
2	0.6	Not reasonable: usually needs active regulation

• A 1024-channel Module consumes 30W

- \rightarrow Assume PS DC/DC connection induces no more than 0.5V drop: PS output set @ 12.5V
- \rightarrow If PS is 20 m away the cross section of the power wires should be 2 x 3.5 mm^2

²²² ^{irfu} Power distribution for a 1024-channel CyMBaL module w/o DC/DCs

- If DC-DC converters cannot be placed on FEBs or in a close vicinity, can they be dropped off at all?
 - \rightarrow Low voltage is distributed directly from remote power supply?

- A 256-channel FEB with passive electrical RDO interface consumes 8.4W
 - \rightarrow With DC-DC converter dropped
 - 2.1V is distributed to LDOs to produce 1.2V for ASICs
 - 1.5V distribution with sense wire regulation on a long distance might be problematic; increased to 2.1V
- A 1024-channel detector module consumes 33W
- Assume PS LDO connection should not induce more than 0.5V drop: PS output set @ 2.6V
 - \rightarrow If PS is 20 m away the cross section of the power wires should be
 - 2 x 5.5 mm² if FEBs are individually powered
 - 2 x 22 mm² if a common power is delivered to a 1024-channel detector module

²²² ^{irfu} To summarize on FEB with passive electrical RDO interface

- Low active component count: minimal power consumption
- Clock and synchronous command distribution via a high fidelity radiation hardened fan-out
 - \rightarrow Rafael : no internal PLL; Exists
 - \rightarrow Prisme : internal PLL with phase adjustment; Under development
- No on board aggregation: ASIC data links interfaced directly with the RDO receivers
- FEB to RDO distance limited to 5-6m
 - \rightarrow Active driver-repeater-buffers can be used to increase the distance
 - \rightarrow Attention should be paid to ground-power return passes and pickup noise
- Expected power consumption of a 256-channel FEB
 - \rightarrow 7.5 W with on-board or closely coupled DC/DC : 30 mW / channel
 - 3.5 mm² wires would be appropriate to distribute required power to entire 1024-channel detector module
 - Location of the magnetic field tolerant bulky DC/DC converters will most probably be problematic
 - \rightarrow 8.4 W without DC/DC regulators : 33 mW / channel
 - III 5.5 mm² if FEBs are individually powered
 - If a common power is delivered to a 1024-channel detector module

Example: powering of a merged FEB / RDO

- On-FEB RDO in a harsh environment
- FE ASICs are thought with "IpGBT / CERN" interfaces
 - → Separate lines for downstream interfaces: clock, synchronous commands, asynchronous configuration commands
 - → VTRX+ needs to be coupled with an on-RDO "intelligence" to recover this imbedded information
 - \rightarrow CERN has lpGBT; ePIC counts on FPGAs
- On FEB FPGA / VTRX+ combination
 - \rightarrow SEU effects need to be understood, acceptable failure rates to be agreed on
 - Estimation: 8h MTBF for entire CyMBaL with a low cost low profile Latice Nexus radiation tolerant FPGA
 - \rightarrow Worst power consumption scenario
 - Estimation: 45-50 mW / channel 50% increase compared to electrical interface
 - 1.5 mm² (DC/DC + LDO) or 8 mm² (LDO only) wires to power FEB
 - \rightarrow Cooling and its additional infrastructure !

CERN VTRX+

An extra power load from FPGA (and VTRX+): local DC/DC option

Guess for Lattice LIFCL-40-9BGA400 FPGA power rails : inspired from evaluation kit design

\rightarrow Core:	1.0V – 800 mA	0.8 W
\rightarrow Analog VCC for SER-DES:	1.0V – 200 mA	0.2 W
\rightarrow Digital VCC for SER-DES, ADC, VCCAUX:	1.8V – 300 mA	0.6 W
\rightarrow 10 VCC:	1.2V – 250 mA	0.3 W

VTRX+

cea irfu

- \rightarrow Supply voltage 1V2
- \rightarrow Supply voltage 2V5
- Extra 2.2 W
 - \rightarrow Needs refinement

 \rightarrow 3.9 W

- 256-channel FEB: 11.3 W
 - \rightarrow 44 mW / channel
 - 14 extra mW/ch

1.0V – 800 mA	0.8 W
1.0V – 200 mA	0.2 W
1.8V – 300 mA	0.6 W
1.2V – 250 mA	0.3 W

^{cea} irfu On power distribution: LV to FEB without DC-DC regulators

- Distribute 3V and 2.1V from remote power supplies to FEBs
 - \rightarrow Assume 2.1V is distributed to FEB LDO to produce 1.2V for ASICs / VTRX+ and 1V for FPGA
 - \rightarrow Assume 3V is distributed to FEB LDO to produce 2.5V for VTRX+ / FPGA and 1.8V for FPGA
 - \rightarrow Low cross-section sense wires to ensure on-load regulation
- Power consumption of a 256-channel FEB with passive electrical RDO interface: 8.4W

Power consumption of a 256-channel FEB with FPGA & VTRX+ : 12.5W

 \rightarrow Extra 15 mW/ch

irakli.mandjavidze@cea.fr

48 mW/ch

Power distribution summary

DC/DC-based LV distribution

 \rightarrow Remote power supply distributes 12V with voltage drop over 20 m cables < 0.5V

• LDO-based LV distribution

 \rightarrow Remote power supply distributes 2.1V and 3V with voltage drop over 20 m cables < 0.5V

irfu To summarize on FEB with VTRX+ optical RDO interface

- Due to detector partitioning, VTRX+ upstream bandwidth will be largely underused → Not a big deal
- Requires a local on-board "intelligence"
 - \rightarrow Clock recovery, downstream data separation, upstream data aggregation
- Local intelligence can be implemented on a low end low cost FPGA
 - \rightarrow Low to moderate rate SEU effects to be taken into account
 - \rightarrow If case differential IO pins are limited, use high fidelity fan-out for clock and fast commands
 - Rafael, Prisme
 - \rightarrow Requires a dedicated R&D
- FEB to RDO distance unlimited
- Expected power consumption of a 256-channel FEB
 - \rightarrow 11.6 W with on-board or closely coupled DC/DC : 44 mW / channel extra 14 mW/ch from FPGA / VTRX
 - 5.2 mm² wires would be appropriate to distribute required power to entire 1024-channel detector module
 - Location of the magnetic field tolerant bulky DC/DC converters will most probably be problematic
 - \rightarrow 12.3 W without DC/DC regulators : 48 mW / channel extra 14 mW/ch from FPGA / VTRX
 - III 7.3 mm² if FEBs are individually powered
 - If a common power is delivered to a 1024-channel detector module

Example: powering of FEB with COTS e/o interface

- FE ASICs are directly interfaced to 4-lane bidirectional parallel optic FireFly transceivers
 - → Requires an "innovative" ASIC interface: Rx line encoding clock and data (sync & async commands)
 - \rightarrow Plus extra handy features:
 - A low speed embedded ADC for environmental monitoring
 - A GPIO outputs for on-board control

• FEB

- \rightarrow Radiation hardened ASICs
- \rightarrow Low active component count: minimal power consumption
 - ~35-37 mW / channel 15% increase compared to pure electrical interface
 - 1 mm² (DC/DC + LDO) or 6 mm² (LDO only) wires to power FEB

MPGD powering 15/Feb/2024 ePIC eDAQ

^{cea} ^{irfu} Power distribution with bi-directional optical 4-lane FireFly

DC/DC-based LV distribution

 \rightarrow Remote power supply distributes 12V with voltage drop over 20 m cables < 0.5V

LDO-based LV distribution

 \rightarrow Remote power supply distributes 2.1V and 3V with voltage drop over 20 m cables < 0.5V

²²² ^{irfu}, To summarize on "alternative" FEB with FireFly optical RDO interface

- Close to minimal active components: FE ASICs and a bi-directional optical 4-lane FireFly
 - \rightarrow No on-board intelligence, no aggregation, no clock-fast command distribution
 - \rightarrow ASIC is seen as a "DAQ unit" a direct bi-directional connection with RDO
 - \rightarrow Fastest configuration
- FEB to RDO distance unlimited
- Expected power consumption of a 256-channel FEB
 - \rightarrow 9 W with on-board or closely coupled DC/DC : 35 mW / channel extra 5 mW/ch due to FireFly
 - 4 mm² wires would be appropriate to distribute required power to entire 1024-channel detector module
 - Location of the magnetic field tolerant bulky DC/DC converters will most probably be problematic
 - \rightarrow 9.6 W without DC/DC regulators : 39 mW / channel extra 5 mW/ch due to FireFly
 - III 5.5 mm² if FEBs are individually powered
 - If a common power is delivered to a 1024-channel detector module