

LFHCal absorber material change

Friederike Bock (ORNL) March 4, 2024

LEHCal

Current Design

- 4 layers of W $_{(16 \text{ mm})}$ -Sci plates $_{(4\text{mm})}$ + 61 layers of Steel $_{(16 \text{ mm})}$ -Sci plates $_{(4\text{mm})}$
- Multiple towers combined in one module to reduce dead areas, increase granularity
- Read-out:
 - SiPMs in each tile grouped in 7 signals per tower (signals combined from 10(5) Sci-plates)
 - readout position: after full HCal
- Modules of different sizes (8M, 4M) to maximize coverage & assembly efficiency

DSL: Friederike Bock deputy DSL: Miguel Arratia Read-out expert: Norbert Novitzky Participating institutes: ORNL, BNL, FNAL, ISU, GSU, Yale, UCR, UTK, Valpo, UCLA, UTA, Indiana

Recommendation from FDR

Main recommendations to be adressed from absorber review:

Charge 1

- ► Use the power of the now existing full simulation for further understanding of detailed requirements
 - * Uniformity within segments
 - Tungsten vs. stainless steel
 - ★ Dynamic range
 - $\star\,$ Cast and molded scintillator, small and large SiPMs
- ► Use LFHCal simulation as integrated in overal ePIC simulation and study physics sensitivity to technical performance
- ② Charge 2
 - Implement software compensation as soon as possible and re-assess the benifits of the tungsten section

Highlighted recommendations have direct impact on CD3-A procurement package \Rightarrow needed to be adressed urgently

Tungsten vs. no Tungsten studies

- Several studies performed by UCR-Crew:
 - Initial study & methodology explanation
 - Updates for energy resolution
 - Update for position resolutions
- Focussing on combined energy and position resolution for single particles for forward Ecal and HCal with or without HCal tungsten layers
- Baseline simple sampling fraction weighted based average for energy resolutions
- Graphnet used for optimization and better software compensation

Energy resolution

- Baseline w/o tungsten performs better than with tungsten (sub-optimal baseline assessment with unoptimized weights)
- Graphnet performance shows similar behavior: w/o tungsten performs siginificantly better than with tungsten
- Low energy performance siginificantly better with ECal infront, slightly worse constant term (might simply be fitting artefact)

F. Bock (ORNL)

LFHCal

Energy resolution vs η

- ${\, {\circ}\,}$ E-resolution as function of η shows similar behavior as global performance
- Not using tungsten with ECal infront seems favorable

Theta & Phi resolution vs η

 Angular resolutions in general very good, primarily derived from additional hit in ECal

 Slight deterioration without additional tungsten layers in θ

- Contrary to initial standalone LFHCal & insert studies tungsten layers in combination with WSciFi-ECal not benefitial
- After consultation with magent group tungsten layers replaced by 1020 steel as all other absorber components and casings, except the PCB convers which will be 304 stainless steel
- Results in significant cost savings & easier production of absorber structure
- Further multi-particle studies will be carried out to address remaining simulation comments from review

Suggested design change: Replace current tungsten layers with 1020 steel as rest of HCal