

HSR Transition Related Experiments

Henry Lovelace III et al

03/14/24

Outline

- Background
 - Transition crossing
 - EIC challenges
- APEX 23-10 (APEX 24-13 => Silvia)
 - Reduced Number Jump Quadrupoles
- APEX 23-11
 - Resonance Island Jump (Phase I)
- Summary

Longitudinal Model

- During transition, the bunch length shrinks and the momentum spread increases which are measurable quantities in RHIC
- The increase in ramp rate minimizes the bunch length reduction during transition

Typical RHIC Sextant

• For RHIC, a **First Order Matched** (FOM) correction system consisting of four families, Q inner (outer) and G inner (outer), of jump quadrupoles was implemented to correct the nonlinear effects of transition.

The First Order Matched correction, in the sense that $\Delta \gamma_T$ is linear to the integrated strength of the jump quadrupole, is:

$$\Delta \gamma_T = \frac{\gamma_T^3}{2C} \sum_i (k_1 l)_i \eta^2$$

Where η is dispersion

The FOM is a local (sextant) correction scheme

Reduced Number of Jump Quadrupoles

Relativistic Heavy Ion Collider

- Experiment Goal
 - Understanding the effect of the loss of compensation (Q) transition jump quadrupoles on transition crossing
 - Compare results to model
 - Subsidiary: Document RHIC crossing
- G family → Black arrows
- Q family → multicolor arrows

5

RHIC Maximum Optics Perturbation Pre- and Post Transition

In RHIC, by design, the $(k1l)_g \approx -(k1l)_q$ (6%difference) Shown below are plots of the pre- and post-transition $\beta(top)$ - and $\eta(middle)$ - difference in baseline optics and jump quadrupole maximum excitation

6

HSR Example

National Laboratory

- The latest HSR:
 - 12 PS
 - 40 jump quadrupoles
 - IR2 missing/not used
 - IR6 missing/not used
 - Only 2 of the local compensation schemes remain intact

7

RHIC 8 PS Configuration

The k factor for this configuration is 2.7 β wave peak values are a factor of 4 times greater than standard RHIC

Tune evolution vs Transition γ

rookhaven

National Laboratory

- Comparison between the 8 PS (Experimental) and 12 PS (Normal) configurations
 - 8 PS looks promising when tune evolution is modeled
 - K1l of qt family reaches
 0.012 1/m
 - Range is |k1|| < 0.008 1/m
 - 8 PS Q family
 - 0.013 1/m
 - Much too large!

9

Experiment 23-10

- Multiple jump quadrupole configurations
 - RHIC-48 (G, Q) = (24, 24) -baseline
 - HSR-40 has (G, Q) = (24, 16)
 - Local Compensation vs Global
 - Testing
 - (G, Q) = (24, 20)
 - (G, Q) = (24, 16)
 - (G, Q) = (24, 12)
 - (G, Q) = (24, 8)
- 12 bunches of nominal intensity
- Mis-tune injection to increase bunch length & momentum spread
- Observables
 - bunch length
 - current loss
 - emittances
 - orbit changes -- proxy for β waves

Transition Crossing using Stable Resonance Islands Jump (RIJ)

11

The idea:

- Use nonlinear magnetic fields to produce stable resonance islands
 - $\alpha_{c,rij} > \alpha_{c,nom} => \gamma_{t,rij} < \gamma_{t,nom}$
 - Dipole kicker deflects beam into stable island until $\gamma > \gamma_{t,nom}$
 - The beam is then kicked back on to the standard closed orbit by a dipole kicker

A novel non-adiabatic approach to transition crossing in a circular hadron accelerator

M. Giovannozzi^{1,a}, L. Huang², A. Huschauer¹, A. Franchi³

Transition Crossing using Stable Resonance Islands Jump (RIJ)

- Experiment Goal
 - Phase I: Establish stable resonance islands at injection and measure island tune, and Twiss parameters.

Experiment 23-11

Lee, S.Y. (Feb 1995). Beam dynamics experiments at the IUCF cooler ring. AIP Conference Proceedings, 326(1), 12-51.

At injection, adjust tune to quarter integer stabilizing using octupoles

- Generate a system in which to measure the island tunes
- Calculate the Δγ_T of the islands compared to the beam on axis
- Using the turn by turn analysis, the island tune will be calculated as well as the difference in gamma transition. The IPM will be used as a secondary method to verify trapping and separation during the island formation.

Summary

- Experiment 23-10
 - -Reduced Number of Jump Quadrupole
 - Multiple configurations where the Q family is reduced
 - -Normal beam diagnostics
 - -16 hrs
- Experiment 23-11
 - -Resonance Island Jump Part I
 - -At injection, tunes moved to quarter integer with octupole field to stabilize
 - -Normal beam diagnostics
 - -8 hrs
- In both experiments
 - -IPM, WCM, BPM, current monitors, and loss monitors will be used
 - Schottky will be needed for 23-11

Back up

What is Phase Transition?

After Transition

16

Before Transition

 Shown to the left is a schematic of two particles traveling in a circle about a central force. The more energetic particle travels with a greater radius, R and velocity, v. When $\Delta v/v$ $> \Delta R/R$, the particles are said to be below transition and if $\Delta v/v$ $< \Delta R/R$, the particles are above transition.

What is Phase Transition?

- When accelerating a particle
- We first will define the slippage η = $1/\gamma_t{}^2\text{-}1/\gamma^2$
- $\gamma < \gamma_t$ and $\eta < 0$, the particles that are more energetic than the synchronous will have a shorter revolution period
- $\gamma > \gamma_t$ and $\eta > 0$, the particles that are more energetic than the synchronous will have a longer revolution period
- $\ensuremath{\cdot}$ The dependence on η causes the synchrotron tune to slow as the beam crosses transition
 - The adiabaticity condition not satisfied at transition
- The revolution period of the particle is independent of the particles energy at $\gamma=\gamma_{\scriptscriptstyle t},$
 - The nonadiabatic time, T_c, of the synchrotron motion where the bunches are shorter and may become unstable due to particles response to the change in the bucket can be formulated as:

$$T_C = \left(\frac{AE_T}{ZeV|\cos\left(\phi_s\right)|} \times \frac{\gamma_T^3}{h\gamma'} \times \frac{C^2}{4\pi c^2}\right)^{1/3}$$

- Johnsen Effect
 - Described as particles with various momenta crossing phase transition at different times
 - Unwanted emittance growth due to chromatic nonlinearities
 - The formulated analog to the time duration, nonlinear time T_{NL} , of the Johnsen effect is:

$$T_{NL} = \left(\alpha_1 + \frac{3}{2}\beta_T^2\right)\frac{\gamma_T}{\gamma'}\delta_{max}$$

17

Electron-Ion Collider

 $d\omega_s$

 $\ll 1$

The γ_{T} Jump

- Allows the beam to cross transition faster.
 - The jump does not allow bunches the time to become too short, thus reducing space charge forces that are normally seen without the jump.

γ_τ is timedependent

LF Schottky through RHIC Ramp

LF Schottky tracking through RHIC ramp with 12 bunches.

Note. Discontinuity of the Schottky bands is due to a lagging readout of 28 MHz RF. The RF traverses 14 revolution harmonics during the ramp.

