

HSR Transition Related **Experiments**

Henry Lovelace III et al

03/14/24

Outline

- Background
	- Transition crossing
	- EIC challenges
- APEX 23-10 (APEX 24-13 = > Silvia)
	- Reduced Number Jump Quadrupoles
- APEX 23-11
	- Resonance Island Jump (Phase I)
- Summary

Longitudinal Model

- During transition, the bunch length shrinks and the momentum spread increases which are measurable quantities in RHIC
- The increase in ramp rate minimizes the bunch length reduction during transition

Typical RHIC Sextant

4

● For RHIC, a **First Order Matched** (FOM) correction system consisting of four families, Q inner (outer) and G inner (outer), of jump quadrupoles was implemented to correct the nonlinear effects of transition.

The First Order Matched correction, in the sense that Δ γ _r is linear to the integrated strength of the jump quadrupole, is:

$$
\Delta \gamma_T = \frac{\gamma_T^3}{2C} \sum_i (k_1 l)_{i} \eta^2
$$

Where η is dispersion

The FOM is a local (sextant) correction scheme

Reduced Number of Jump Quadrupoles

Relativistic Heavy Ion Collider

- Experiment Goal
	- Understanding the effect of the loss of compensation (Q) transition jump quadrupoles on transition crossing
	- Compare results to model
	- Subsidiary: Document RHIC crossing
- G family \rightarrow Black arrows
- Q family \rightarrow multicolor arrows

5

Electron-Ion Collider

RHIC Maximum Optics Perturbation Pre- and Post Transition

In RHIC, by design, the $(k1I)_q$ ≈ -(k1l)_a (6%difference) Shown below are plots of the pre- and post-transition β(top)- and η(middle)- difference in baseline optics and jump quadrupole maximum excitation

6

Electron-Ion Collider

HSR Example

- The latest HSR:
	- 12 PS
	- 40 jump quadrupoles
	- IR2 missing/not used
	- IR6 missing/not used
	- Only 2 of the local compensation schemes remain intact

RHIC 8 PS Configuration

The k factor for this configuration is 2.7 β wave peak values are a factor of 4 times greater than standard RHIC

Tune evolution vs Transition γ

National Laboratory

- Comparison between the 8 PS (Experimental) and 12 PS (Normal) configurations
	- 8 PS looks promising when tune evolution is modeled
	- K1l of qt family reaches 0.012 1/m
		- Range is |k1l| < 0.008 1/m
		- \cdot 8 PS Q family
			- 0.013 1/m
				- Much too large!

9

Experiment 23-10

- Multiple jump quadrupole configurations
	- $-$ RHIC-48 (G, Q) = (24, 24) -baseline
	- $-$ HSR-40 has $(G, Q) = (24, 16)$
		- Local Compensation vs Global
	- **Testing**
		- $(G, Q) = (24, 20)$
		- $(G, Q) = (24, 16)$
		- $(G, Q) = (24, 12)$
		- $(G, Q) = (24, 8)$
- 12 bunches of nominal intensity
- Mis-tune injection to increase bunch length & momentum spread
- **Observables**
	- bunch length
	- current loss
	- emittances
	- orbit changes -- proxy for β waves

Transition Crossing using Stable Resonance Islands Jump (RIJ)

11

The idea:

- Use nonlinear magnetic fields to stable resonan produce stable resonance islands
	- \cdot $\alpha_{c,rij} > \alpha_{c,nom} = > \gamma_{t,rij} < \gamma_{t,nom}$
	- Fourth level • Dipole kicker deflects beam into stable island until $\gamma > \gamma_{t,nom}$
	- The beam is then kicked back on to the standard closed orbit by a dipole kicker

A novel non-adiabatic approach to transition crossing in a circular hadron accelerator

M. Giovannozzi^{1,a} (b), L. Huang², A. Huschauer¹, A. Franchi³

Transition Crossing using Stable Resonance Islands Jump (RIJ)

- Experiment Goal
	- Phase I: Establish stable resonance islands at injection and measure island tune, and Twiss parameters.

Experiment 23-11

Lee, S.Y. (Feb 1995). Beam dynamics experiments at the IUCF cooler ring. AIP Conference Proceedings, 326(1), 12-51.

At injection, adjust tune to quarter integer stabilizing using octupoles

- Generate a system in which to measure the island tunes
- $-$ Calculate the $\Delta\gamma_T$ of the islands compared to the beam on axis
- Using the turn by turn analysis, the island tune will be calculated as well as the difference in gamma transition. The IPM will be used as a secondary method to verify trapping and separation during the island formation.

Summary

- Experiment 23-10
	- Reduced Number of Jump Quadrupole
	- Multiple configurations where the Q family is reduced
	- Normal beam diagnostics
	- -16 hrs
- Experiment 23-11
	- Resonance Island Jump Part I
	- At injection, tunes moved to quarter integer with octupole field to stabilize
	- Normal beam diagnostics
	- -8 hrs
- In both experiments
	- IPM, WCM, BPM, current monitors, and loss monitors will be used
		- Schottky will be needed for 23-11

Back up

What is Phase Transition?

Before Transition

• Shown to the left is a schematic of two particles traveling in a circle about a central force. The more energetic particle travels with a greater radius, R and velocity, v. When Δv/v > ΔR/R, the particles are said to be below transition and if Δv/v $<$ Δ R/R, the particles are above transition.

16

∆v^{v-}

After Transition

What is Phase Transition?

- When accelerating a particle
- We first will define the slippage $\eta = 1/\gamma_t$ ²- $1/\gamma^2$
- \cdot γ < γ and η < 0, the particles that are more energetic than the synchronous will have a shorter revolution period
- γ > γ_t and η > 0, the particles that are more energetic than the synchronous will have a longer revolution period
a The denoming are nonveased the symphotics time to claim as the hoore systems transition
- The dependence on η causes the synchrotron tune to slow as the beam crosses transition
	- The adiabaticity condition not satisfied at transition
- The revolution period of the particle is independent of the particles energy at $\gamma = \gamma_t$,
- The nonadiabatic time, T_c , of the synchrotron motion where the bunches are shorter and may become unstable $\frac{1}{2}$ due to particles response to the change in the bucket can be formulated as:

$$
T_C = \left(\frac{AE_T}{ZeV|\cos{(\phi_s)}|} \times \frac{\gamma_T^3}{h\gamma'} \times \frac{C^2}{4\pi c^2}\right)^{1/3}
$$

- Johnsen Effect
	- Described as particles with various momenta crossing phase transition at different times
		- Unwanted emittance growth due to chromatic nonlinearities
	- The formulated analog to the time duration, nonlinear time T_{NL} , of the Johnsen effect is:

$$
T_{NL}=\left(\alpha_1+\frac{3}{2}\beta_T^2\right)\frac{\gamma_T}{\gamma'}\delta_{max}
$$

17

Electron-Ion Col

$$
\frac{1}{\omega_s^2} \left| \frac{d\omega_s}{dt} \right| \ll
$$

The γ_{τ} Jump

- **Allows the beam to cross transition faster.**
	- **The jump does not allow bunches the time to become too short, thus reducing space charge forces that are normally seen without the jump.**

● **γ T is timedependent**

LF Schottky through RHIC Ramp

LF Schottky tracking through RHIC ramp with 12 bunches.

Note. Discontinuity of the Schottky bands is due to a lagging readout of 28 MHz RF. The RF traverses 14 revolution harmonics during the ramp.

Andrei Sukhanov

