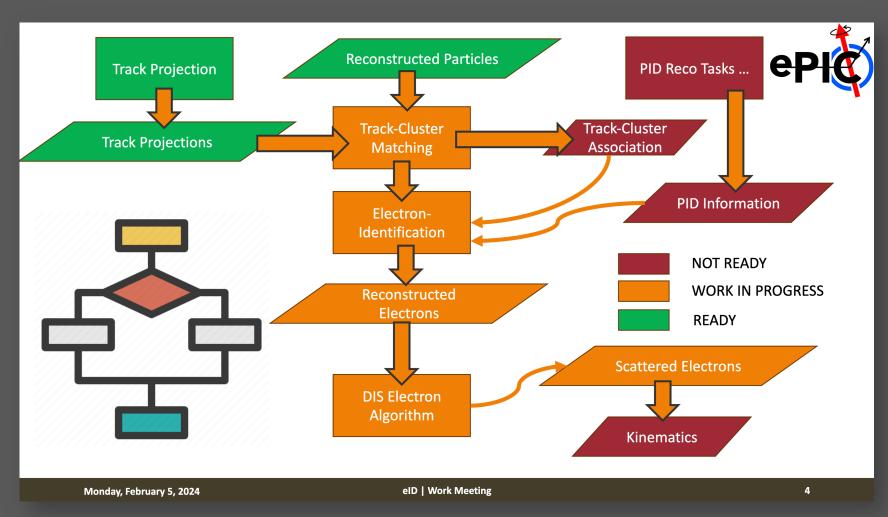
Electron Finder Status

Tristan Protzman

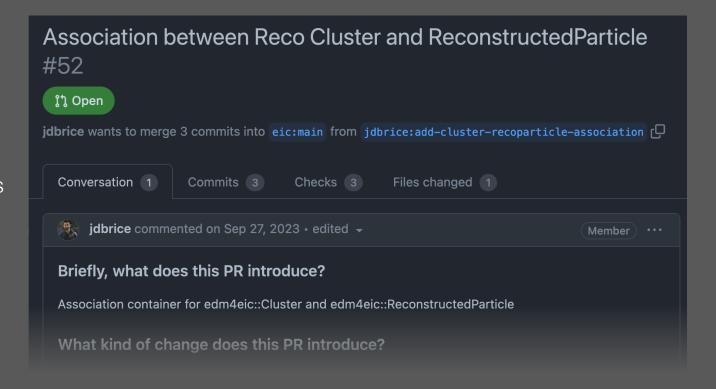
Lehigh University


March 13, 2024

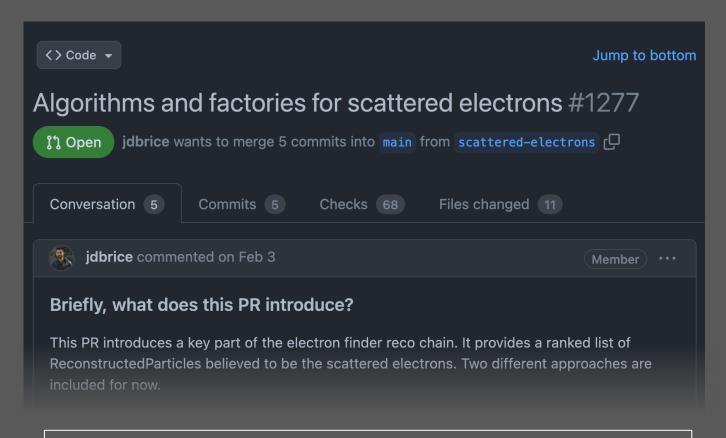
DIS Electron Identification

- Charge: To develop an efficient algorithm for identifying electrons and identifying the scattered DIS electron
- Realistic scattered electron information required for
 - o Physics analyzers to perform benchmarks studies
 - Informing detector design
- Critical to have for TDR!

Dependencies


- Proper eID requires more complete track and PID reconstruction
- Goal: Initial version ready for April campaign
 - Shortcut full track and PID, use track projections
 - When more complete reconstruction is ready, transition to that
- 2 pull requests need to be merged for v1 of eID

Brandenburg, TRD Readiness Discussion

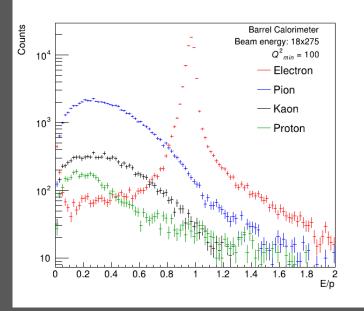

EDM4eic Objects

- PR #52 adds association between reconstructed particles and clusters
- Recently received comments
 - o Bringing naming in line with EPIC conventions
 - o Add comments about usage

Algorithms

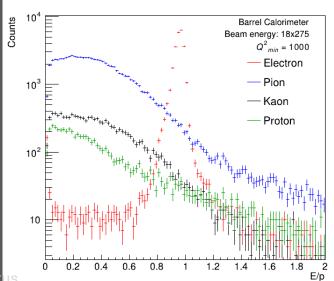
- PR #1277 adds two podio output collections
 - ScatteredElectronsTruth Based off truth information
 - o ScatteredElectronsEMinusPz Ranks electrons identified by ReconstructedElectron_factory by descending $E-p_z$, keeping those within a configurable threshold
- Separate factories for truth and reco objects allow performance to be easily benchmarked

Once basic algorithms proved out, more complex algorithms may incorporate hadronic final state kinematics or semi-hard radiation from electron


Algorithm - Comments

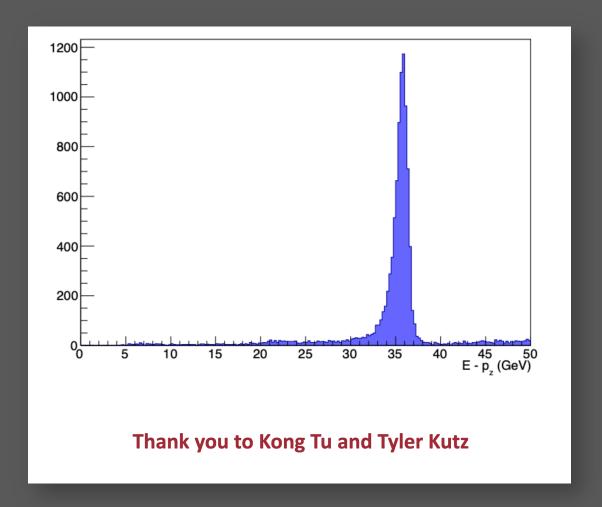
- Working to address comments and implement for April campaign
- $\Leftrightarrow E/p$ cut:
 - Need to balance electron efficiency and hadron contamination
 - o Early study on next slide
- $\bullet E p_z$ selection:
 - O What is it's discriminating power?
- Charge symmetric background
 - o Positrons, electrons from pair production may be identified as DIS lepton
 - o Need to keep positive charged candidates as well to characterize background

E/p study


- NC DIS events from December campaign
- Electron identified by matching to truth
- ❖ With tight 0.9 < E/p < 1.1 cut, good purity without too much of a hit to efficiency</p>
- Dominated by pion contamination

$Q_{\min}^2 = 100 \, (GeV/c)^2$

$$\begin{split} 0.00 &\leq E/p \leq 2.00 \text{ Purity: } 0.51 \text{ Efficiency: } 1.00 \\ 0.60 &\leq E/p \leq 2.00 \text{ Purity: } 0.83 \text{ Efficiency: } 0.96 \\ 0.80 &\leq E/p \leq 1.20 \text{ Purity: } 0.94 \text{ Efficiency: } 0.90 \\ 0.80 &\leq E/p \leq 2.00 \text{ Purity: } 0.92 \text{ Efficiency: } 0.94 \\ 0.88 &\leq E/p \leq 1.10 \text{ Purity: } 0.96 \text{ Efficiency: } 0.85 \\ 0.90 &\leq E/p \leq 1.20 \text{ Purity: } 0.96 \text{ Efficiency: } 0.84 \\ 0.90 &\leq E/p \leq 1.10 \text{ Purity: } 0.97 \text{ Efficiency: } 0.82 \\ \end{split}$$


$\overline{Q_{\min}^2} = 1000 \, (GeV/c)^2$

 $0.00 \le E/p \le 2.00$ Purity: 0.21 Efficiency: 1.00 $0.60 \le E/p \le 2.00$ Purity: 0.57 Efficiency: 0.98 $0.80 \le E/p \le 1.20$ Purity: 0.80 Efficiency: 0.95 $0.80 \le E/p \le 2.00$ Purity: 0.73 Efficiency: 0.97 $0.88 \le E/p \le 1.10$ Purity: 0.88 Efficiency: 0.90 $0.90 \le E/p \le 1.20$ Purity: 0.87 Efficiency: 0.88 $0.90 \le E/p \le 1.10$ Purity: 0.89 Efficiency: 0.87

$E - p_z$ cut

- Simple algorithm for ranking DIS lepton candidates
- \diamond Distribution peaks at twice the e^- beam energy
- Studies underway to determine discrimination power

Priorities

- Dedicated eID meeting to finalize PR ahead of April campaign
- ❖ Need to get in eID in hands of analyzers
 - o How do the simple algorithms perform?
 - o Where does it fail?

Summary

- First pass of eID nearly ready for April campaign
 - Dedicated meeting soon to discuss open points
- Two pull requests open adding functionality
 - Will work to address comments and merge shortly
- Two algorithm to compare performance
 - One using truth information
 - o One using reconstructed information
- \clubsuit Studies underway to optimize selections on E/p and $E-p_z$