SVT

Physics-driven needs on tracking and vertexing for the EIC project detector ePIC are quite demanding. They drive the requirement of a well-integrated, large-acceptance, high-precision, low-mass tracking and vertexing subsystem: Silicon Vertex Tracker (SVT).

Tracking requirements from PWGs						
			Momentum res.	Material budget	Minimum p T	Transverse pointing res.
η						
-3.5 to -3.0	Central Detector	Backward Detector	$\sigma p / p \sim 0.1 \% \times p \oplus 0.5 \%$	$\sim 5 \%$ X0 or less (~MAPS + MPGD trackers)	100-150 MeV/c	
-3.0 to -2.5					100-150 MeV/c	dca(xy) $\sim 30 / \mathrm{pT} \mu \mathrm{m} \oplus 40 \mu \mathrm{~m}$
-2.5 to -2.0			$\sigma p / p \sim 0.05 \% \times p \oplus 0.5 \%$		100-150 MeV/c	dca(xy) $\sim 30 / \mathrm{p} \top \mu \mathrm{m} \oplus 20 \mu \mathrm{~m}$
-2.0 to -1.5					100-150 MeV/c	
-1.5 to -1.0					100-150 MeV/c	
-1.0 to -0.5		Barrel	$\sigma p / p \sim 0.05 \% \times p \oplus 0.5 \%$		100-150 MeV/c	dca(xy) $\sim 20 / \mathrm{pT} \mu \mathrm{m} \oplus 5 \mu \mathrm{~m}$
-0.5 to 0						
0 to 0.5						
0.5 to 1.0						
1.0 to 1.5		Forward Detector	$\sigma p / p \sim 0.05 \% \times p$ ¢ 1%		100-150 MeV/c	dca(xy) $\sim 30 / \mathrm{pT} \mu \mathrm{m} \oplus 20 \mu \mathrm{~m}$
1.5 to 2.0					100-150 MeV/c	
2.0 to 2.5					100-150 MeV/c	
2.5 to 3.0			$\sigma p / p \sim 0.1 \% \times p \oplus 2 \%$		100-150 MeV/c	dca(xy) $\sim 30 / \mathrm{pT} \mu \mathrm{m} \oplus 40 \mu \mathrm{~m}$
3.0 to 3.5					100-150 MeV/c	dca(xy) ~ 30/pT $\mu \mathrm{m} \oplus 60 \mu \mathrm{~m}$

Yellow Report, Table 11.2

In turn, SVT requires high-granularity and low-power active elements - synergy with ITS3 sensor development minimized material associated with mechanics, cooling, power, readout, slow control, etc.

Five barrel layers, normally referred to as L0-L4; L0,L1,L2 form the Inner Barrel (IB) and L3,L4 the Outer Barrel (OB) Five disks on either side of the nominal interaction point, also numbered 0-4

Recent SVT workfest, c.f.
https://indico.bnl.gov/event/20473/sessions/6736/\#all.detailed
has a wealth of information

What follows is in part a summary/re-use and in part new/additional.

Sensor

Background - MOSAIX

ITS3 Chip development

- CERN currently developing a new chip for the ITS3 upgrade of ALICE MOSAIX
- Will be "wafer scale" - full length, one reticle wide
- Idea is to thin and bend them around the beampipe. Dicing to different width will give the three required layers.

Science and
Technology
Facilities Council

Background - MOSAIX

Figure 3.34: Block diagram of the sensor segment.

Technology
Facilities Council

ITS3 to ePIC

Inner Barrel

- Use MOSAIX directly
- Requires supply agreement with CERN (in negotiation)
- Planning difficult since design in flux need to account for this

Science and Technology Facilities Counci

Inner Barrel (IB)
3 curved layers

SVT
MPGDs
ToF (fiducial volume)

Electron/Hadron Endcaps (EE, HE) 5 disks on either side of the IP

Outer Barrel/Discs

- Improve Yield - reduce number of RSUs
- Need to reduce mass at system level
- Requires agreement for database access with CERN (in negotiation)

Develop an EIC-LAS plus support chip for staves and discs

Keep up to date with MOSAIC developments (TDR next major release)

MOSAIX to EIC-LAS

Inner Barrel

- 12 RSUs
- 8 data links

Excess material for required data rate
Yield likely too low

- 7 slaw ling material when built into stave
- 7 slow control links
- Direct powering

Excess material when built into stave

Outer Barrel

- Reduced number of RSUs
- Single data link
- Multiplex slow control
- Serial powering

Staves and Disks

Many layout studies have been performed over the years - some examples below Converged on use of an EIC-LAS with 5 and/or 6 RSUs

52 stave
ePIC-SVT HD3 $z=+1000 \mathrm{~cm}$

88 stave

ePIC-SVT ED3 $\mathrm{z}=-850 \mathrm{~cm}$

88 stave

88 stave

88 stave

88 stave

Current stave-concept (option) for L3 and L4

Layer 3 (Opt 1 \& 2, 6RSU-LAS)

Layer 4 (Opt 3-ish, 5RSU-LAS)

Concept

- Sensor assembly

Sensor geometry used (approximate 5RSUs)

| | 106.00 mm |
| :---: | :---: | :---: | :---: |

- Core of stave is made of array of foam blocks

- Crossribs are K9
- Central spar 3\% RVC
- Could be thinned to hourglass shape
- Alternatively, carbon fibre I-beam
- Edges are 3\% RVC
- Alternatively, 3\% AI, if we want to run the power bus through this
- In that case the Al would be in shorter sections for serial powering

L4 cylinder

epíquk

- Will investigate options for annular linking
- Might be beneficial to couple staves with some damping material (soft foam) to dampen air-flow induced vibrations

Current disk concept

Cooling

SVT Cooling

Initial service estimates based on:

- Approximately 4,000 EIC Large Area Sensors (EIC-LAS),
- Power dissipation dominated by endcap (periphery), then thought to consume ~1 W
- Air cooling or a hybrid with liquid cooling - R\&D
- Writeup of November 2022 may be found at this sharepoint link

Estimates have evolved since the initial writeup:

- Sensor count remains approximately 4,000 EIC-LAS,
- Power dissipation in the pixel matrix has increased and is estimated to contribute $0.6-1 \mathrm{~W}$ per EIC-LAS
- Power dissipation in the periphery is under investigation and may be reduced through a reduction of the number of data lines - this relies crucially on the sensor agreement and subsequent modification of the design of the sensor periphery,
- Serial powering reduces the electrical service load and requires an ancillary IC with its own power dissipation; this dissipation is under investigation / to be determined,
- The readout chain with LpGBT and VTRx+ is thought to be a smaller contributor,

SVT cooling is a (still ongoing) R\&D item with implications on X / X_{0} and hence tracking performance.

Power Density

From EP R\&D WP 1.2 General Reporting Meeting

Table 3.10: Estimates of average power dissipation per unit area over the main blocks composing the sensor.

Note: EIC-LAS LEC is expected to dissipate less power - reduction under study.

SVT IB air cooling

ALICE ITS3 cooling test setup

Measurements: endcap $=1 \mathrm{~W} / \mathrm{cm}^{2}$, matrix $=50 \mathrm{~mW} / \mathrm{cm}^{2}$ suitable redesign of inlets and outlets.

SVT Cooling - OB, disks

Air-cooling internal to the mechanical structures offers advantages, e.g. in routing of air,

Builds on prior LBNL LDRD with carbon composite structures and RVC or CVD (heat conducting) foam,

Started from existing structures and heat-loads, inherited from prior LDRD,

Heat loads were changed to become SVT specific while SVTspecific, lower mass, mechanical structures were being developed.

Concept demonstrated on the right with existing mechanical structures; $10^{\circ} \mathrm{C}$ in reach - structure is too "massive" though.

SVT Cooling - disks

Corrugated prototype test pieces

Each piece $\rightarrow 2$ layers 34 gsm veil +5 layers resin
Face sheets glued with 9309 adhesive in 5 mm strips
Final size of prototype test piece $=22.4 \mathrm{~cm} \times 20.2 \mathrm{~cm}$
Final weight of prototype test piece $=22.5 \mathrm{~g}$
Density $=497 \mathrm{gsm} \rightarrow \sim 0.12 \% \mathrm{X} / \mathrm{XO}$
Silicon $\sim 0.05 \%$ X/X0, adhesive 0.01-0.02\% X/X0
(Recall, SVT target of $\mathrm{X} / \mathrm{X}_{0} \sim 0.25 \%$ per disk)

First Prototype

SVT Cooling - disks

Corrugated carbon fiber thermal tests

Two heaters with separate power zones for LEC $\left(\sim 1 \mathrm{~W} / \mathrm{cm}^{2}\right)$ \& matrix ($\sim 40 \mathrm{~mW} / \mathrm{cm}^{2}$)

Using 3M 467MP double-sided tape, $60 \mu \mathrm{~m}$ thick (used to glue silicon for STAR HFT PXL)

- First step: Put a tube in corrugated
 channel and blow air through

SVT Cooling - disks

Results: air flow through corrugation

- No issues cooling the matrix
- LEC (Periphery) trending in the right direction
- Next steps:
- Add foam under the LEC
- Improve thermal conductivity
- Better air control

Uptick at highest velocity possibly due
to thermocouple breakage

ΔT Periphery (max) $\left({ }^{\circ} \mathrm{C}\right)$

$1 \mathrm{~W} / \mathrm{cm}^{\wedge} 2$$0.81 \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
$0.6 \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
$0.44 \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
$0.22 \mathrm{~W} / \mathrm{cm}^{\wedge} 2$

Air velocity (m/s)

$\Delta T(P D) / \Delta T\left(1 \mathrm{~W} / \mathrm{cm}^{\wedge} 2\right)$

- $1 \mathrm{~W} / \mathrm{cm}^{\wedge} 2$

0.81 W/cm^2
$0.6 \mathrm{~W} / \mathrm{cm}^{\wedge} 2$$0.44 \mathrm{~W} / \mathrm{cm}^{\wedge} 2$
$0.22 \mathrm{~W} / \mathrm{cm}^{\wedge} 2$

\%($\Delta T($ No Foam $)-\Delta T($ Foam $)) / \Delta T($ No Foam $)$

- $1 \mathrm{~W} / \mathrm{cm} 2-0.8 \mathrm{~W} / \mathrm{cm} 2-0.6 \mathrm{~W} / \mathrm{cm} 2$

Note: not all foam is created equal - here, foam is simply RVC; alternative being considered

Static Temperature of Cooling Channel Outlet at a Velocity of $10 \mathrm{~m} / \mathrm{s}$

Cooling:

- One way to look at e.g. a large disk is simply as an 80 cm by 4 mm cross section,
- Airflow up to $10 \mathrm{~m} / \mathrm{s}$ then points to $0.032 \mathrm{~m}^{3} / \mathrm{s}$ or 68 cfm air flow,
- The total airflow in an endcap is ~ 4.5 times larger (4 large disks, one small disk),
- This corresponds to $0.144 \mathrm{~m}^{3} / \mathrm{s}$ or 305 cfm
- Add 50% if the disk-thickness will be 6 mm ,
- Multiply by 2 if air is guided in from the center of the disk and sent out at the edges,
- The total for an endcap is then $0.432 \mathrm{~m}^{3} / \mathrm{s}$ or 915 cfm

This is, of course, consistent with the values Nikki put forward at the SVT workfest at ANL.
The difference between ~ 300 and $\sim 1,000 \mathrm{cfm}$ is, of course, not negligible.

Minimum diameter pipe sizing for a closed loop network
"Shop air"

- Common problem "everywhere"
- Source here is from a "Topring" catalogue
- Indicates the need for a 32 - 50 mm diameter tube into the experiment with 6 7 atmospheres

In practice, more likely:

- 6-8 of such tubes for the two endcaps, the inner and outer barrel, and the segmentation in top and bottom halves,
- Or fewer, if one groups.

Distribution and regulation needs engineering input/design.

Minimum diameter pipe sizing for a linear network (dead end)
total lengit of the network (feet)

Corrugated Disc of 6 mm Height - Rev $2($ Mesh size $=\mathbf{2 m m})$

Mode	$\sqrt{ }$
Frequency $[\mathrm{Hz}$	
1.	107.69
2.	117.61
3.	164.44
4.	346.76
5.	392.68
6.	432.55

Corrugated Disc of 4 mm Height - Rev $1($ Mesh size $=\mathbf{2 m m})$

Ansys

 Ansys 2023 F 2 e^{x}

Mode	\boldsymbol{V} Frequency $[\mathrm{Hz}]$
1.	84.658
2.	101.67
3.	131.72
4.	285.87
5.	334.3
6.	345.08

Many SVT aspects not covered here,

Bi-weekly SVT general meeting today at noon is "on topic"

- Elke Aschenauer will discuss integration and installation constraints
- Andy Jung and Georg Viehhauser will address envelopes, mounting hierarchy
- Domenico Elia may update on IB CAD effort at INFN

Logistics:

https://indico.bnl.gov/event/22343
https://cern.zoom.us/j/61734290399?pwd=bUkzYy94U0xaWnFkWmdTSjl4YkNIZz09
Meeting ID: 61734290399
Passcode: 601003

Thanks Rahul for agreeing to mesh the schedules!

