eRD110 FY24 Progress Report

Alexander Kiselev (BNL) on behalf of the eRD110 Consortium
ePIC / EIC Project Detector R\&D Day, March 25, 2024

HRPPD / MCP-PMT evaluation activities \& funding

eRD110 proposal topics as of August 2023	Actual funding	Status \& plans
Samtec interposers purchase	Not funded	Ordered using FY23 carryover money
HRPPD passive interface	Not funded	Built using FY23 carryover money
HRPPD ASIC backplane	Not funded	PED funding request coming
B field studies at Argonne	MCP-PMT evaluation only	Planned for summer 2024
B field studies at INFN	Not funded	
Beam tests at Fermilab	Cancelled	Focus on lab studies in 2024
HRPPD ageing studies at INFN	FY24 funding granted	Planned for summer 2024
HRPPD QE evaluation at Argonne	Not funded	
HRPPD PDE evaluation at BNL	Not funded	
Timing upgrade at BNL	FY24 funding granted	Pretty much completed
MCP-PMT evaluation at Glasgow	FY24 funding granted	Setup upgrade work in progress

HRPPD passive interface \#1

Brookhaven
National Laboratory

$>$ For installations with a low electronics channel count
> Samtec -> MMCX adapter; MMCX -> MCX pigtail cables, grounding caps
$>$ Four sets assembled by now (one @ JLab, one @ Incom)

HRPPD passive interface \#2

$>$ Interface to the existing 64-channel edge-to-MCX adapter cards
$>$ Allows one to scan a full HRPPD quadrant at once (256 channels)
$>$ Two sets assembled (one @ Incom \& one @ BNL)

Femtosecond laser calibration system

Brookhaven
National Laboratory

Menlo Systems Elmo 780 Erbium Fiber Femtosecond Laser
ELMO = Primary Laser Oscillator
ELMA = Optical Amplifier
SHG $=2^{\text {nd }}$ Harmonic Generator

Measurements with Photonis MCP-PMT

IR Photodiode Pulse
Rise Time ~ 70 ps
Pulse Width < 160 ps

Time Jitter between Photodiode Trigger and MCP < 5 ps

Conclusion: we should be able to make timing measurements with a resolution < 10 ps

Photosensor performance in a B-field

Generic LAPPDs and first available HRPPD were tested at the Argonne g-2 magnet in 2022-2023
$>$ Gain decreases as the magnetic field strength increases
$>$ Gain can be recovered by increasing the bias voltage of the MCPs and the photocathode
> Conclusion: HRPPDs would work for hpDIRC and pfRICH, not suitable for dRICH due to the sensor plane orientation

FY24: Photek MCP-PMT testing planned

HRPPD \#6 (with $10 \mu \mathrm{~m}$ pores) operational up to $\sim 1.8 \mathrm{~T}$

Photek \& Photonis MCP-PMT evaluation

Photek Auratek stock configuration
Photek Auratek MAPMT253 16x16 pixel Multi-anode MCP-PMT ordered by JLab in Dec 2023
> Planned to be shipped to Glasgow mid April 2024
> Adapter boards available
> A 32-channel V1742 digitizer and a PCI card by CAEN ordered via USC
$>$ Arriving to Glasgow end of April 2024
$>$ Meanwhile can use a 16-channel desktop CAEN digitizer

Photek \& Photonis MCP-PMT evaluation

$>$ SoW Agreement between JLab and UoG still being set up by finance / legal teams
$>$ Waiting for budget in place so that pieces for upgrade of test stand can be ordered
$>$ Currently arranging loan paperwork to borrow PANDA Planacon MCP-PMT from GSI
$>$ This is the one which was thoroughly tested at Erlangen by A. Lehmann
> Will be on loan until Dec 2024 and used as a reference tube for UoG setup

2022 LAPPD beam test data analysis

INFN groups: Trieste, Genova

\Rightarrow CERN PS beam line, $20 \mu \mathrm{~m}$ pore Gen II LAPPD (capacitively coupled)
$>$ Focus: timing performance characterization with a particle beam

2022 LAPPD beam test data analysis

INFN groups: Trieste, Genova

$$
\sigma_{t}=p_{0}+\frac{p_{1}}{\sqrt{V_{\text {peak }} / 1 V}}
$$

Single photon time resolution: 75 ps Asymptotic limit for large amplitude (multiple detected photons) : 18 ps

	Contents lists available at ScienceDirect Nuclear Inst. and Methods in Physics Research, A journal homepage: www.elsevier.com/locate/nima	

Full Length Article

LAPPD B-field and ageing studies

INFN groups: Trieste, Genova
Essentially a carryover of the approved FY23 program
$>$ First campaign with field up to 0.5 T (November 2023)

Efficiency

Slides

Second campaign with field up to 1.5 T (March 2024, ongoing these days)
Preparation for HRPPD photocathode ageing studies ongoing

Summary

$>$ Activities in FY24 are ongoing, within the limits of a provided funding
$>$ We should be able to meet the milestones
$>$ The whole effort is migrating into the PED world
$>$ HRPPD evaluation
$>$ Auratek \& Planacon evaluation beyond FY24
$>$ ASIC backplane design
$>$ Integration into detector prototypes (pfRICH)

Backup

LAPPD studies by INFN groups - HIGHLIGHTS

INFN groups: Trieste, Genova

FY2022: Completion of the lab equipment for LAPPD characterization at INFN

HRPPD \#16 (EIC HRPPD \#2)

$>$ A number of production bugs fixed, as compared to \#15
$>$ If everything goes well, will be ready for shipment next week

Passive interface

Enables ASIC interface to MCP-PMTs
$>$ Connectivity for any of the sixteen 8×8 pad fields:
> A set of [2 x Samtec ERM8 -> MMCX] adapters, 32ch (4×8) connected at a time
> A set of ERM8-based grounding caps for all other 8×8 fields

HRPPD \#15 (EIC HRPPD \#1)

The QE scan looks very promising: ~33\% @ 365nm

HRPPD \#15 (EIC HRPPD \#1)

Gain few times 10^{6}; afterpulsing seems to be small

HRPPD \#15 (EIC HRPPD \#1)

DCR few kHz/cm²; SPE timing ~60ps

