Off-Axis Tracking Issue Fix PCA Seeded Tracking

$15^{\text {th }}$ February, 2024
Harsimran Singh
Lokesh Kumar
Department of Physics, Panjab University
Chandigarh, India

Outline

- Issue with current truth-seeded tracking
- Proposed Fix: PCA Seeded Tracking
- Definition, approach \& calculation
- Testing \& Analysis Results
- Summary \& Discussion

Issue with current truth-seeded tracking

We set the initial track parameters based on the generated particle's momentum vector, charge, and creation point. This information is then fed into the CKF in addition to a line surface (perigee surface) along the z axis through $(0,0,0)$.

```
// Insert into edm4eic::TrackParameters, which uses numerical values in its specified units
auto track_parameter = track_parameters->create();
track_parameter.setType(-1); // type --> seed(-1)
track_parameter.setLoc({static_cast<float>(std::hypot(v.x, v.y)), static_cast<float>(v.z)}); // 2d location on surface [mm]
track_parameter.setLocError({1.0, 1.0}); // sqrt(variance) of location [mm]
track parameter.setTheta(theta); //theta [rad]
track_parameter.setPhi(phi); // phi [rad]
track_parameter.setQ0verP(charge / pinit); // Q/p [e/GeV]
track_parameter.setMomentumError({0.01, 0.05, 0.1}); // sqrt(variance) on theta, phi, q/p [rad, rad, e/GeV]
track parameter.setTime(mcparticle.getTime()); // time [ns]
track_parameter.setTimeError(10e9); // error on time [ns]
track_parameter.setCharge(charge); // charge
```

```
// Construct a perigee surface as the target surface
auto pSurface = Acts::Surface::makeShared<const Acts::PerigeeSurface>(Acts::Vector3(0,0,0));
// Create parameters
acts_init_trk_params.emplace_back(pSurface, params, charge, cov);
```


Issue with current truth-seeded tracking

The created particle's momentum vector should be tangential to the cylinder surrounding the line surface which may not be the case always.

Line surface

Acts: : LineSurface is a special kind of surface that depends on a reference direction, typically the unit momentum direction \vec{d} of a particle. A point in space is considered on surface if and only if it coincides with the point of closest approach between the direction vector \vec{d} and the line direction vector \vec{z}. As such, the function Acts: :LineSurface::globaltoLocal() can fail, if the argument position and direction do not fulfill this criterion. It is pure-virtual, meaning that it can not be instantiated on its own.
class LineSurface : public Acts::Surface
Base class for a linear surfaces in the TrackingGeometry to describe dirft tube, straw like detectors or the Perigee It inherits from Surface.

LineSurface/PerigeeSurface

Issue with current truth-seeded tracking

Black arrow: Generated particle at its creation point

Blue arrow: Where the CKF will think the particle comes from in the current truth seeding implementation.

In Barak's talk, he gave an example where he generated particle at $(10,0,0) \mathrm{mm}$ in non-tangential direction to the line surface. CKF thought that particle was created at $(-1.74,9.85,0) \mathrm{mm}$ in tangential direction.

Proposed Fix: Point of Closest Approach (PCA) Definition

In ACTS, a point on the trajectory in xy-plane that is closest to the beamline axis is called transverse PCA.

Proposed Fix: PCA calculation using straight line approximation

Proposed Fix: PCA Calculation

The coordinates of PCA will be where dotted magenta line distance is minimum from z axis

Proposed Fix: PCA Calculation

PR : https://github.com/eic/EICrecon/pull/1291

```
// define line surface for local position values
auto perigee = Acts::Surface::makeShared<Acts::PerigeeSurface>(Acts: :Vector3(0,0,0));
// track particle back to transverse point-of-closest approach
// with respect to the defined line surface
auto linesurface_parameter = -(v.x*p.x + v.y*p.y)/(p.x*p.x + p.y*p.y);
auto xpca = v.x + linesurface_parameter*p.x;
auto ypca = v.y + linesurface parameter*p.y;
auto zpca = v.z + linesurface_parameter*p.z;
Acts::Vector3 global(xpca, ypca, zpca);
// convert from global to local coordinates using the defined line surface
Acts::Vector2 localpos;
Acts::Vector3 direction(sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta));
auto local = perigee->globalToLocal(m_geoSvc->getActsGeometryContext(), global, direction);
if(!local.ok())
{
    continue;
}
localpos = local.value();
// Insert into edm4eic::TrackParameters, which uses numerical values in its specified units
auto track parameter = track parameters->create();
track_parameter.setType(-1); // type --> seed(-1)
track_parameter.setLoc({(float)localpos(0), (float)localpos(1)}); // 2d location on surface [mm]
```


Testing the fix:

The $d d s i m$ output file used to analyse the effect of changes in EICrecon had the following configurations:

- Particle Thrown: Muon
- Number of Events: 5000
- Gun Multiplicity i.e. Muons thrown per event: 10
- Distribution used: Uniform, so it will be flat in theta \& phi
- Min. Muon Momentum: 0 GeV
- Max. Muon Momentum: 10 GeV
- Gun Direction: (0.000 0.000 1.000) [in mm] //default
- Gun Position: (3.000 4.0005 .000) [in mm] vertex position
- Compact File: \$DETECTOR_PATH/\$DETECTOR_CONFIG.xml

Analysis: Truth/MC Particles Distributions

Vertex: $(3,4,5) \mathrm{mm}$

Results: Track Phi

Results: Track phi vs r

```
default
```


Vertex: $(3,4,5) \mathrm{mm}$ changed

Track Azimuthal Angle vs $r_{p c a}$ (Loc-a)

Results: Track phi vs $\mathrm{z}_{\mathrm{pca}}$

default

Track Azimuthal Angle vs $\mathrm{z}_{\mathrm{pca}}$ (Loc-b)

Vertex: $(3,4,5) \mathrm{mm}$
changed

Summary \& Discussion

- Changed seed coordinates in truth tracking form vertex position to PCA position which is calculated by a straight line approximation.
- Initial tests show improvement in the truth seeded tracking performance for tracks generated off $(x, y)=(0,0)$ i.e. z axis.
- Will continue further on this and detailed analysis of vertexing algorithm for off axis tracks with this fix is yet to be done.

Backup Slide(s)

Analysis: Reconstructed Particles Distributions

```
default
```

Rec: Eta (η) vs Phi (ϕ)

Vertex: $(3,4,5) \mathrm{mm}$

```
changed
```

Rec: Eta (η) vs Phi (ϕ)

