dRICH Integration

News: +3 cm downstream shift with respect the IP, O(10 cm) tolerance in aerogel disk radius

dRICH Basic Module

Scalable to the wanted shape

Baseline for the real-scale prototype

dRICH Shell

dRICH Bore

The hadron beam angle forces an expanding pipe and a off-axis dRICH bore dRICH bore should be big enough to provide clearance for the beam pipe during operations

Case 1: single dRICH volume rolling in and out along the beam pipe

dRICH bore should be enlarged to remove all interferences along the pipe Mid-flange and pipe cross-section at the parking position provide similar constraint

Running position within ePIC

Parking position for maintenance

Rolling in and out a single piece

Rolling in and out a single piece

dRICH Clearance

~ 70 cm clearance to enter the barrel

Case 2: two dRICH halvesto be divided as soon as outside ePIC

dRICH bore could be minimized if the mid-flange is moved in front of dRICH The septum will obstruct inter-sector photon propagation.

Running position within ePIC

Extraction position

Divide into two halves as soon as out of ePIC

Divide into two halves as soon as out of ePIC

Decision pending on the maintenance plan at IP6 + dRICH acceptance study

Large (2x4 m²) septum would be inside the acceptance

with implications for the mechanical stability vs pressure gradients we need to explore

SIDIS Physics

Notes (provisional):

- physics ϕ is defined vs the electron scattering plane, i.e. is not the laboratory ϕ_{LAB}
- pseudorapidity (and physics) should be defined with respect \vec{q} vector (\neq solenoid axis)

Impact point of the hadron track projected (w/o megnetic filed) on the dRICH entrance window Psudorapidity defined with respect the electron axis (ePIC axis)

η_e > 1.5

 $\eta_e = 2.5 + / - 0.2$

Impact point of the hadron track projected (w/o megnetic filed) on the dRICH entrance window Psudorapidity defined with respect the q axis (~ beam pipe axis)

η_h > 1.5

 $\eta_{\rm h} = 2.5 + / - 0.2$

dRICH Options

There is some flexibility on the maximum aerogel radius: potential benefit for acceptance; important tolerance for mechanics / insulation.

The ePIC asymmetric pipe suggests an off-axis bore for the dRICH.

This should be fine from the physics point of view.

The maintenance at IP6 (without beam vacuum break) impose constraints on the dRICH model

- large bore: loss in pseudorapidity acceptance (unrecoverable)

- split into two halves: loss in azimuthal acceptance (mitigated by ϕ_{LAB} invariance)

The design of the dRICH basic block (sector) is ongoing as basis for a real-scale demonstrator (with realistic components, assembling, sealing, thermal insulation, services, off-axis optics,)

Detector box :

The detector box is being optimized to preserve internal optics without blind areas

Services lines are being defined to stay in the detector box "shadow"

The 3 cm shift downstream is useful to relax space constraints

Beam pipe:

Maintenance at IP6 is posing some serious constraint on the dRICH structure and performance impact:

A large bore with "irreducible" losses in pseudorapidity

A septum with significant impact on aerogel photon yield in 4 out of 6 sectors.

Consequences and mitigations are being studied together with the Project