ePIC TDR engagement – The context, a quick reminder

- TDR contributions requested from ePIC anticipated by PM at the ePIC meeting in Warsaw (July 2023)
- SP-office elaborated a **proposal for ePIC engagement in the TDR effort**, discussed and enriched with :
 - Coordinators
 - CC management
 - EB
- Proposal presented to the Collaboration at the general meeting on December 1, 2023
 - In view of a more ample discussion at the ePIC meering in January 2024
- At the ePIC meeting:
 - Planning for the ePIC TDR (in the plenary sessions)
 - Workfest "Software & Sim TDR Readiness", then reported in the plenary sessions

TDR – structuring the effort (slides shown at the ePIC meeting in Jan. 2024)

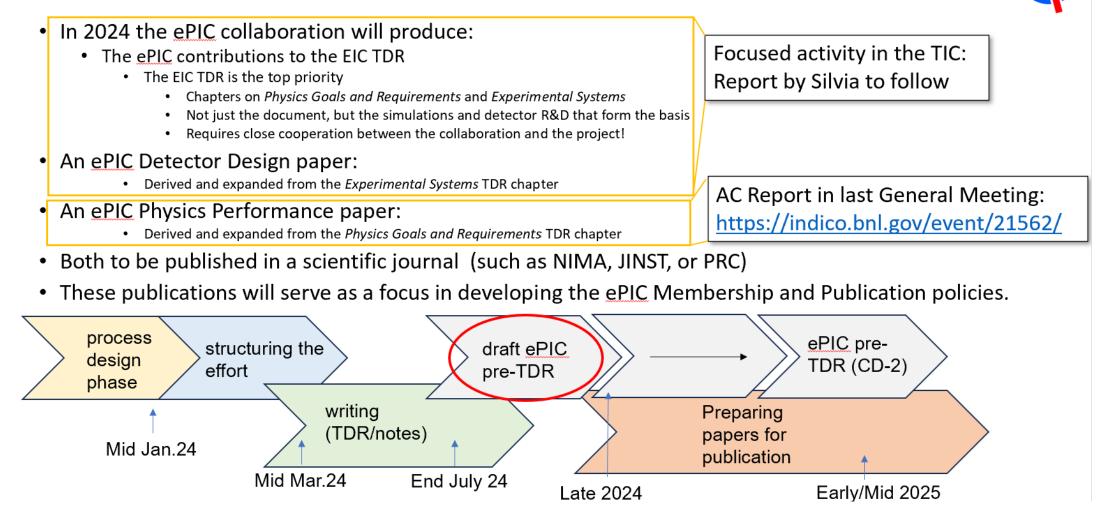
TDR

• PM Serves as the "managing editors" for the ePIC Contributions to the EIC TDR

• TDR Chapter 2

- Holistic detector performance (short form)
 - The TC Office acts as "editor"
 - Organized/supervised by CC WG conveners
- Physics performance and science reach (short form)
 - The ACs acting as "editors"
 - The Physics WGs as subgroups for text drafting

TDR Chapter 8


- Detector description and basic performance
 - Project CAMs/Collab. DSL's acting as "coeditors" for their sections
 - The DSCs provide studies, material, text, etc.
- Software, Analysis and Data Preservation
 - Project CAMs and SCCs acting as "editors"
 - The electronics/DAQ CC WG and the software WGs

ePIC publications

- ePIC SP-Office serves as the "managing editors" for the ePIC publications
- ePIC Physics Performance Publication:
 - Holistic detector performance (extended text)
 - The TC Office acts as "editor"
 - Organized/supervised by CC WG conveners
 - Physics performance and science reach (extended text)
 - The ACs acting as "editors"
 - The Physics WGs as subgroups for text drafting
- ePIC Detector Publication
 - Detector description and basic performance
 - DSL's acting as "editors" for their sections
 - The DSCs provide studies, material, text, etc.
 - Software, Analysis and Data Preservation
 - SCCs acting as "editors"
 - The electronics/DAQ CC WG and the software WGs for text drafting

ePIC TDR engagement — The strategy in a nutshel

TDR Strategy and Publications

ePIC TDR engagement — More about the preparatory work

CHAPTER 2

ePIC responsibility

Joint responsibility

2	Phys				
	2.1	EIC	Context an	d History	Project responsibility
	2.2	The	Science Go	als of the EIC and the Machine Parameters	
	2.3	Scie	ntific Requ	irements	
		2.3.1	Systemat	ic Uncertainties	
		2.3.2		Corrections	
	2.4	The	EIC Scienc	e (ePIC performance for key observables)	
		2.4.1		Nucleon Mass	
		2.4.2		Nucleon Spin	
		2.4.3		nensional Imaging of the Nucleon	
			2.4.3.1	Imaging in Momentum Space	
			2.4.3.2	Imaging in Transverse Position Space	
		2.4.4	Propertie	s of Nuclear Matter	
			2.4.4.1	Gluon Saturation	
			2.4.4.2	Nuclear Modifications of Parton Distribution Functions	s
			2.4.4.3	Passage of Color Charge Through Cold QCD Matter .	
				0 0 0 1	

ePIC TDR engagement — More about the preparatory work

CHAPTER 8

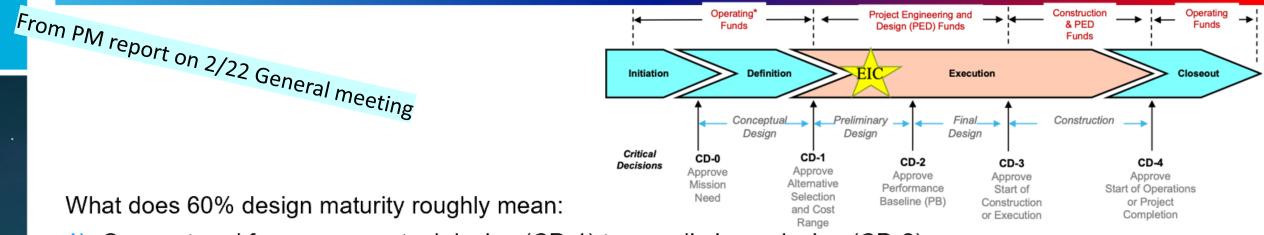
Expe	perimental Systems					
8.1		rimental Equipment Requirements Summary				
8.2	Gene	ral Detector Considerations and Operations Challenges				
	8.2.1	General Design Considerations				
	8.2.2	Backgrounds and Rates				
	8.2.3	Radiation Level				
8.3	The e	PIC Detector				
	8.3.1	Introduction				
	8.3.2	Magnet				
	8.3.3	Tracking				
	8.3.4	Particle Identification				
	8.3.5	Electromagnetic Calorimetry				
	8.3.6	Hadron Calorimetry				
	8.3.7	Particle Identification				
	8.3.8	Far-Forward Detectors				
	8.3.9	Far-Backwards Detectors				
	8.3.10	Polarimetry				
	8.3.11	Readout Electronics and Data Acquisition				
	8.3.12	Software and Computing				
8.4	Dete	ctor Integration				
	8.4.1	Installation and Maintenance				
8.5		ctor Commissioning and Pre-Operations				

ePIC responsibility

Joint responsibility

Project responsibility

About chapter 8, subsystem texts


- Texts are expected to be complete and full contained: the reader can find there everything about a subsystem
- Texts should follow **a common scheme** to facilitate readers
 - When an item is not needed for a given subsystem, it can be skipped
- TODAY we are discussing this scheme

ePIC TDR engagement — a preparatory step

FOR EACH SUBSYSTEM

- Device **concept and justification** for the technological choice
- Description
 - General device description
 - Sensors
 - FEE
 - Other components (f.i.: radiators in calorimetry and in Cherenkov devices, ...)
- Performance from available input (lab studies, test beam, prototyping, simulation studies)
- Expected **data rates** from FEE
- Radiation hardness of components
- Services (cooling, gas system, sensor power supply, FEE power supply, ...)
- Subdetector mechanics and integration
- Calibration, alignment and monitoring strategy and tools
- Status and remaining design effort
 - R&D up to here (and missing, if any); E&D status and outlook
 - Other work needed for design completion
 - Status of maturity (with reference to next slide)
- ES&H (Environmental, Safety & Health) aspects and QA (Quality Assessment) planning
- Construction planning
- **Collaborators** (=Institutions) and their role, resources and workforce
- Risks and mitigation strategy

Design Maturity

- 1) One matured from a conceptual design (CD-1) to a preliminary design (CD-2)
- 2) There can still be open E&D questions but no showstoppers
- 3) One needs to have detailed knowledge that one can define the cost and schedule
- The review committee can judge that one will be able to address those open questions by the projected time of CD-3.

What does 90% design maturity roughly mean:

- 1) The design matured to final (CD-3), i.e., there are no open E&D questions
- 2) One can still do design detailing and producing drawings to accompany procurements
- One can still do design validations as found needed during the vendor construction process; for vendor design-build contracts such as the detector solenoid one can still do design updates as needed.