

ZDC EMCAL Resolution for *A*⁰ **Reconstruction**

Alex Jentsch (BNL)

ePIC TIC Meeting Monday, March 18th, 2024

Electron-Ion Collide

Preliminaries

- Using particle gun to rule out any issues with generator:
 - Sample I had on-hand was with crossing angle with wrong sign.
- Shooting Λ^0 with:
 - 247.5
 - 0 < θ < 2 mrad
- GEANT handles the decay \rightarrow confirmed proper branching fractions:
 - $\Lambda^0 \rightarrow p + \pi^- (\sim 67\%)$
 - $\Lambda^0 \rightarrow n + \pi^0 \rightarrow \gamma \gamma ~(\sim 33\%)$
- Particles shot through magnets for proper aperture, but with beampipe "off" and no real ZDC just using for acceptance.
 - Acceptance of $\Lambda^0 \rightarrow n + \pi^0 \rightarrow \gamma \gamma$ in this study is around ~65%.
- Smearing applied "by-hand" and ignoring reconstruction itself only looking at effect of resolution assumptions for energy and angle.
 - Specifically, nγγ final-states which successfully arrive at the ZDC have their MC truth vectors smeared by various energy/angular resolution values → assumes nothing about how the reconstruction is carried-out.
- Note: This study does not answer the question of what $\Lambda^0 p_T$ (which leads to the Kaon t) resolution is *required*, just how this depends on the energy and angular resolutions of the ZDC

Results

 $\Lambda^0 p_{\tau}$ resolution -- 247.5 < p_{Λ} < 275 GeV/c -- 0 < θ_{Λ} < 2 mrad

3

Results

 $\Lambda^{0} p_{T}$ resolution -- 247.5 < p_{Λ} < 275 GeV/c -- 0 < θ_{Λ} < 2 mrad

Results

• Performance for neutron reconstruction plays the dominant role in Λ^0 reconstruction.

- Results do not indicate that 20cm long PbWO4/LYSO crystals are *needed* for reconstruction of the Λ^0 (via the $\pi^0 \rightarrow \gamma \gamma$).
- Angular resolution plays the dominant role in pT reconstruction.
 - This is clear from the results on the neutron, where the angular resolution is more-important than the energy resolution.

Important Discussion/Considerations

- *How* do we carry-out the reconstruction?
 - We do not a priori know the vertex for the Λ^0 decay \rightarrow this causes a problem for reconstructing the π^0 .
 - For crystals: We will know the positions with ~1-2mm resolution, but we will not have the angular information needed to measure the 4-vector (cannot assume photons originate at IP).
 - For imaging via SiPM-on-Tile: We have enough information about the spatial extent of the showers to extract the incident angle of the photons on the EMCAL \rightarrow this will enable full 4-vector reconstruction of the π^0 (but how good will it be??).

Some options to consider

1. <u>20cm long crystals + SiPM-on-Tile:</u>

- E-resolution is very good, but we lose the benefit of the SiPM-on-Tile for the shower angles for photons.
- This study indicates very high energy resolution for photons not required.
- 20cm long crystals mean ~ full absorption of photon energy, and loss of angular information needed to fully reconstruct the π⁰, and therefore to fully reconstruct the Λ⁰.

PbWO4 radiation length: ~ 0.92cm LYSO radiation length: ~ 1.1cm

Important Discussion/Considerations

• *How* do we carry-out the reconstruction?

- We do not a priori know the vertex for the Λ^0 decay \rightarrow this causes a problem for reconstructing the π^0 .
 - For crystals: We will know the positions with ~1-2mm resolution, but we will not have the angular information needed to measure the 4-vector (cannot assume photons originate at IP).
 - For imaging via SiPM-on-Tile: We have enough information about the spatial extent of the showers to extract the incident angle of the photons on the EMCAL \rightarrow this will enable full 4-vector reconstruction of the π^0 (but how good will it be??).

Some options to consider

1. <u>20cm long crystals + SiPM-on-Tile:</u>

- E-resolution is very good, but we lose the benefit of the SiPM-on-Tile for the shower angles for photons.
- This study indicates very high energy resolution for photons not required.
- 20cm long crystals mean ~ full absorption of photon energy, and loss of angular information needed to fully reconstruct the π⁰, and therefore to fully reconstruct the Λ⁰.

2. <u>~10cm long crystals + SiPM-on-Tile:</u>

- Crystals can act as a sort of "pre-shower", while still enabling usage of the information in the SiPM-on-Tile.
- Crystals still usable to tag events with low-energy photons (e.g. e+A incoherent).
- How well will this really work? A study is needed here!

PbWO4 radiation length: ~ 0.92cm LYSO radiation length: ~ 1.1cm

Important Discussion/Considerations

How do we carry-out the reconstruction?

- We do not a priori know the vertex for the Λ^0 decay \rightarrow this causes a problem for reconstructing the π^0 .
 - For crystals: We will know the positions with ~1-2mm resolution, but we will not have the angular information needed to measure the 4-vector (cannot assume photons originate at IP).
 - For imaging via SiPM-on-Tile: We have enough information about the spatial extent of the showers to extract the incident angle of the photons on the EMCAL \rightarrow this will enable full 4-vector reconstruction of the π^0 (but how good will it be??).

Some options to consider

1. <u>20cm long crystals + SiPM-on-Tile:</u>

- E-resolution is very good, but we lose the benefit of the SiPM-on-Tile for the shower angles for photons.
- This study indicates very high energy resolution for photons not required.
- 20cm long crystals mean ~ full absorption of photon energy, and loss of angular information needed to fully reconstruct the π⁰, and therefore to fully reconstruct the Λ⁰.

2. <u>~10cm long crystals + SiPM-on-Tile:</u>

- Crystals can act as a sort of "pre-shower", while still enabling usage of the information in the SiPM-on-Tile.
- Crystals still usable to tag events with low-energy photons (e.g. e+A incoherent).
- How well will this really work? A study is needed here!

3. <u>SiPM-on-Tile ONLY:</u>

- Allows best option for angular reconstruction of shower.
- *Might* lose low-E photon capability (need to show it works with SiPM-on-Tile **only**).
- Potentially more-difficult hadronic/EM shower separation.

PbWO4 radiation length: ~ 0.92cm LYSO radiation length: ~ 1.1cm

Pictorial view of neutral decay into ZDC

Conclusions

- The p_T resolution of the Λ^0 is dominated by the reconstruction of the neutron (and the HCAL *angular* resolution, primarily), which carries most of the momentum. The energy resolution of the EM section and the impact on $\pi^0 \rightarrow \gamma \gamma$ reco is sub-dominant.
- This study makes the assumption that the ZDC EM section can reconstruct the *vector* direction of the $\pi^0 \rightarrow \gamma \gamma$ (the 4-vector of the photons) with good resolution. It's not clear this could be achieved with long crystals only.
- The angular resolution for $\pi^0 \to \gamma \gamma$ EM showers should be studied in the SiPM-on-tile ZDC using full simulations to see how the imaging capabilities would perform. Ideally, full reconstruction of the Λ^0 should be used to extract the resolution on the Λ^0 p_T (and its relationship to the Kaon t understood).

Neutral exit window

Electron-Ion Collider

- Angles are between the center of the neutral cone and the window.
- Material is stainless steel.
- "survival probability" refers to particles which travserse the window with no interaction with the material - they would arrive "intact" at the detector.

Particle	Energy	Window tilt	thickness	survival probability
neutron	100 to 135 GeV	90 degrees	2 mm	98.8%
neutron	100 to 135 GeV	90 degrees	5 mm	96.9%
neutron	100 to 135 GeV	90 degrees	10 mm	93.8%
neutron	100 to 135 GeV	60 degrees	2 mm	98.4%
neutron	100 to 135 GeV	60 degrees	5 mm	96.3%
neutron	100 to 135 GeV	60 degrees	10 mm	92.6%
neutron	100 to 135 GeV	45 degrees	2 mm	98.1%
neutron	100 to 135 GeV	45 degrees	5 mm	95.8%
neutron	100 to 135 GeV	45 degrees	10 mm	91.6%
neutron	100 to 135 GeV	20 degrees	2 mm	96.4%
neutron	100 to 135 GeV	20 degrees	5 mm	90.7%
neutron	100 to 135 GeV	20 degrees	10 mm	82.7%

Neutrons

1

- Angles are between the center of the neutral cone and the window.
- Material is stainless steel.
- "survival probability" refers to particles which travserse the window with no interaction with the material - they would arrive "intact" at the detector.

Particle	Energy	Window tilt	thickness	survival probability
photon	200 to 275 GeV	90 degrees	2 mm	91.8%
photon	200 to 275 GeV	90 degrees	5 mm	81.3%
photon	200 to 275 GeV	90 degrees	10 mm	66.9%
photon	200 to 275 GeV	60 degrees	2 mm	90.6%
photon	200 to 275 GeV	60 degrees	5 mm	78.9%
photon	200 to 275 GeV	60 degrees	10 mm	62.1%
photon	200 to 275 GeV	45 degrees	2 mm	88.6%
photon	200 to 275 GeV	45 degrees	5 mm	74.0%
photon	200 to 275 GeV	45 degrees	10 mm	56.6%
photon	200 to 275 GeV	20 degrees	2 mm	78.8%
photon	200 to 275 GeV	20 degrees	5 mm	55.1%
photon	200 to 275 GeV	20 degrees	10 mm	31.9%

article	Energy	Window tilt	thickness	survival probability
hoton	0.01 to 1 GeV	90 degrees	2 mm	92.5%
hoton	0.01 to 1 GeV	90 degrees	5 mm	84.0%
hoton	0.01 to 1 GeV	90 degrees	10 mm	68.7%
hoton	0.01 to 1 GeV	60 degrees	2 mm	91.2%
hoton	0.01 to 1 GeV	60 degrees	5 mm	81.2%
hoton	0.01 to 1 GeV	60 degrees	10 mm	65.4%
hoton	0.01 to 1 GeV	45 degrees	2 mm	90.0%
hoton	0.01 to 1 GeV	45 degrees	5 mm	76.1%
hoton	0.01 to 1 GeV	45 degrees	10 mm	60.2%
hoton	0.01 to 1 GeV	20 degrees	2 mm	80.4%
hoton	0.01 to 1 GeV	20 degrees	5 mm	59.1%
hoton	0.01 to 1 GeV	20 degrees	10 mm	35.4%

Photons

Stainless Steel

- Angles are between the center of the neutral cone and the window.
- · Material is stainless steel.
- "survival probability" refers to particles which travserse the window with no interaction with the material - they would arrive "intact" at the detector.

Particle	Energy	Window tilt	thickness	survival probability
neutron	100 to 135 GeV	90 degrees	2 mm	99.4%
neutron	100 to 135 GeV	90 degrees	5 mm	98.2%
neutron	100 to 135 GeV	90 degrees	10 mm	96.9%
neutron	100 to 135 GeV	60 degrees	2 mm	99.2%
neutron	100 to 135 GeV	60 degrees	5 mm	98.2%
neutron	100 to 135 GeV	60 degrees	10 mm	96.7%
neutron	100 to 135 GeV	45 degrees	2 mm	99.0%
neutron	100 to 135 GeV	45 degrees	5 mm	97.5%
neutron	100 to 135 GeV	45 degrees	10 mm	95.6%
neutron	100 to 135 GeV	20 degrees	2 mm	98.0%
neutron	100 to 135 GeV	20 degrees	5 mm	95.4%
neutron	100 to 135 GeV	20 degrees	10 mm	90.8%

Neutrons

- Angles are between the center of the neutral cone and the window.
- · Material is stainless steel.
- "survival probability" refers to particles which travserse the window with no interaction with the material - they would arrive "intact" at the detector.

Particle	Energy	Window tilt	thickness	survival probability
photon	200 to 275 GeV	90 degrees	2 mm	98.3%
photon	200 to 275 GeV	90 degrees	5 mm	96.2%
photon	200 to 275 GeV	90 degrees	10 mm	91.9%
photon	200 to 275 GeV	60 degrees	2 mm	98.0%
photon	200 to 275 GeV	60 degrees	5 mm	95.0%
photon	200 to 275 GeV	60 degrees	10 mm	91.0%
photon	200 to 275 GeV	45 degrees	2 mm	97.6%
photon	200 to 275 GeV	45 degrees	5 mm	94.2%
photon	200 to 275 GeV	45 degrees	10 mm	88.6%
photon	200 to 275 GeV	20 degrees	2 mm	95.6%
photon	200 to 275 GeV	20 degrees	5 mm	88.1%
photon	200 to 275 GeV	20 degrees	10 mm	78.6%

Particle	Energy	Window tilt	thickness	survival probability
photon	0.01 to 1 GeV	90 degrees	2 mm	98.3%
photon	0.01 to 1 GeV	90 degrees	5 mm	96.2%
photon	0.01 to 1 GeV	90 degrees	10 mm	93.0%
photon	0.01 to 1 GeV	60 degrees	2 mm	98.2%
photon	0.01 to 1 GeV	60 degrees	5 mm	95.8%
photon	0.01 to 1 GeV	60 degrees	10 mm	91.4%
photon	0.01 to 1 GeV	45 degrees	2 mm	97.6%
photon	0.01 to 1 GeV	45 degrees	5 mm	95.2%
photon	0.01 to 1 GeV	45 degrees	10 mm	89.8%
photon	0.01 to 1 GeV	20 degrees	2 mm	95.4%
photon	0.01 to 1 GeV	20 degrees	5 mm	89.4%
photon	0.01 to 1 GeV	20 degrees	10 mm	80.9%

Photons

Stainless Steel

Neutrons 100 to 135 GeV

Photons 200 to 275 GeV

Photons 0.01 to 1 GeV

Aluminum

Neutrons 100 to 135 GeV

Photons 200 to 275 GeV

Photons 0.01 to 1 GeV

5