AstroPix Status Update

Amanda Steinhebel, On behalf of the AstroPix team NASA GSFC, NPP/ORAU

12 April 2024 ePIC BIC: Virtual Mini-Workshop

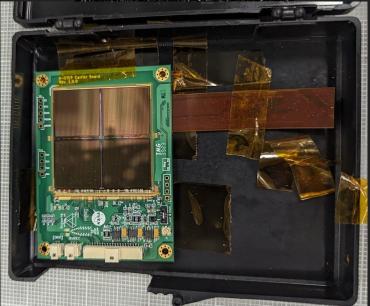
Status Summary

v3

Application in larger NASA payloads

- Currently under test characterization (signal, depletion)
- Single-chip and quad-chip testing
- Future testing in beamline

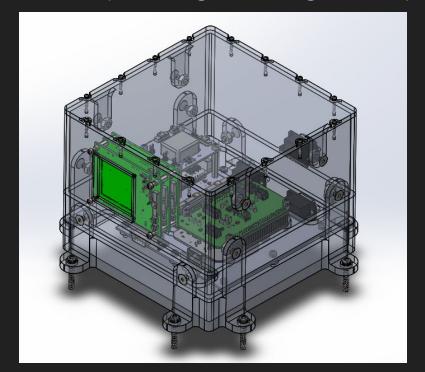
v4


Currently under test - operation **v**5

- In design stage
- Definition of requirements
- For use in BIC

AstroPix_v3

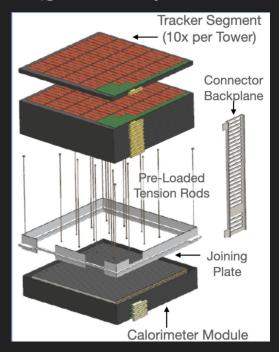
- Characterization testing on 3+ global benches
- Operational testing on 3+ global benches
- 3 wafer resistivities 20, 300, 25k Ω*cm
- "Quad-chip" (bottom) = 4 daisy-chained arrays on one SPI bus
 - Only bottom two chips currently accessible
- 500 x 500 μm² pixel pitch, 35 x 35 pixels
 - Full size 2 x 2 cm² array
- Power consumption:
 - ~0.9 mW/cm² analog
 - 12 mW/array digital
- 25+ wafers at ANL



NASA payloads with v3

- Funded flight opportunities with heritage teams
- Test-bed for AstroPix systems development
 - Scaled FW and SW
 - Mechanical Structures
 - I&T development and testing
 - Robustness of glues, wire bonds, etc
 - Develop selection / test / calibration strategies

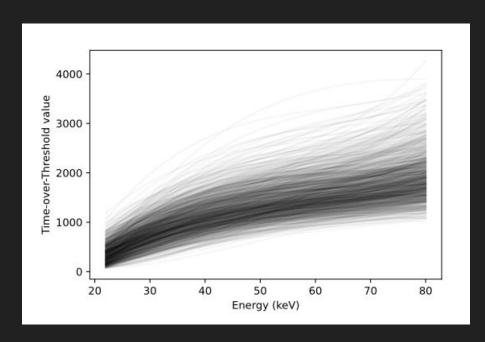
A-STEP (sounding rocket flight, 2025)



- 3 quad-chips (12 arrays, 3 SPI busses)
- V3

NASA payloads with v3

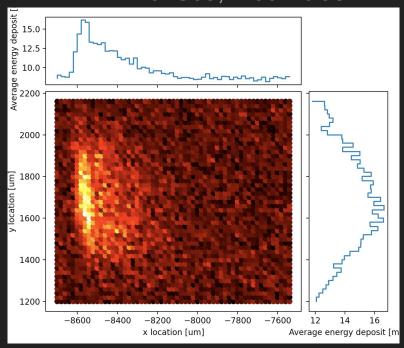
- Funded flight opportunities with heritage teams
- Test-bed for AstroPix systems development
 - Scaled FW and SW
 - Mechanical Structures
 - I&T development and testing
 - Robustness of glues, wire bonds, etc
 - Develop selection / test / calibration strategies


ComPair2 (gamma-ray beam, 2026)

- 10 layers, 96 quad chips/layer
 (3840 arrays, 20 SPI busses)
- V3 for testing, v5 for final

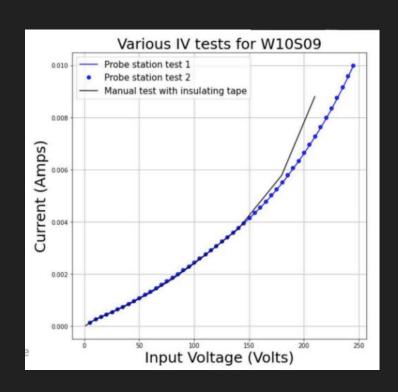
V3 characterization testing - Energy calibration

- Gain variation pixel-by-pixel
 - Must calibrate individually
- ToT limited by bit wrapping
 - Linear nature until ~80 keV
 - Nature of curve >80 keV under investigation at GSFC
- Will develop automated strategy for full-array calibration once these effects all understood



V3 characterization testing - Depletion

- November 2023 edge TCT test at UCSC to directly measure depletion depth
- Reflections, alignment complicate measurement
- Ongoing analysis at GSFC and UCSC


W02S09, -100V bias

Color scale = amplitude of analog pulse at scan point

V3 high-resistivity substrate

- >5 kΩ*cm substrate required for 500 μm depletion
- 25 kΩ*cm mounted chips for v3 saw breakdown <10 mV with high power dissipation on edges
- Probe testing breakdown >200V
- Conductive tape used for mounting to board caused voltage gradient
 - With insulating tape, breakdown>150V
- Future work : reconsider characterization with insulated chips

V3 Quad-chip testing

- First boards delivered Dec. 2023
- Full data collection not yet achieved
- Scaled-up FW:
 - Runs with single-chip board
 - Capable of configuring multiple chips along the daisy chain
- Board respin necessary
 - Correct pad locations for wire bonds to top two chips, update flex PCB bend to connector
 - Simplify voltage regulators for power to chip
- Full board redesign review after problems with current board fully understood/corrected

Highest priority = understand and correct quad-chip board

V3 testing in beamline

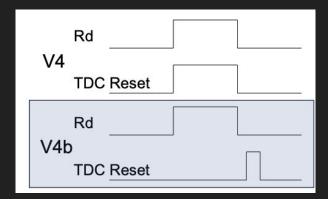
- More details in later talk
- Fermilab Test Beam time in May
 - 120 GeV protons
- Aim to test multiple layers of v3 quad-chips
 - Measure MIP peak
- Goal: get setup working in beam
 - Focus on tracking resolution study at next beam
- Goal: first beam data with v4

AstroPix_v4

- Operational testing on 2 global benches
- 3 wafer resistivities 20, 300, 25k Ω*cm
- $500 \times 500 \, \mu \text{m}^2$ pixel pitch, 16 x 13 pixels
 - o 1 x 1 cm² array
 - Component of multi-project wafer run
- Power consumption:
 - ~1.0 mW/cm² analog
 - 3 mW/array digital
- Asynchronous ToT, 3.125 (12) ns timing with external 20 (5) MHz power-saving clock
- Individual pixel tuneDACs
- Discontinue v3 row/col OR

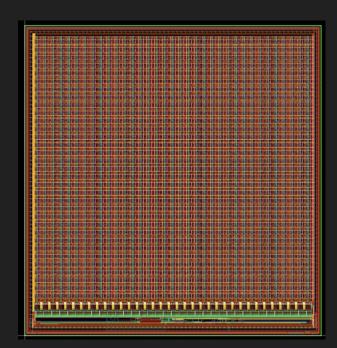
Mounted chips at ANL, distribution after preliminary operational testing

V4 initial tests


Successfully tested features

- FW and SW updated for operation
- Additional bits added to store ToT info (no digital ToT wrapping)
- Tune DACs
- PLL clock generation
- ~380V breakdown

Fixes already implemented

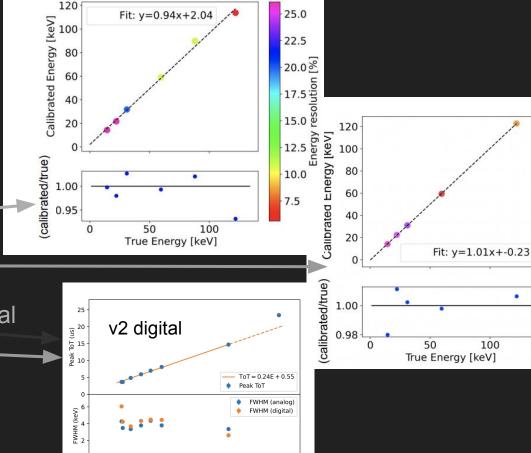

- SPI readout noise corrected carrier board design
- Flash-TDC timing corrected

AstroPix_v5

- Currently under design submission within next few months
 - First fabrication with new foundry, AMS
- 2 wafer resistivities 300, >5k Ω*cm
- 500 x 500 μ m² pixel pitch, 35 x 33 pixels
 - Full size 2 x 2 cm² array
 - Component of multi-project wafer run
- Integrated voltage register for all neede input power lines
- Improved interrupt, readback config via SPI

V5 Requirements

Parameter	Final Requirement	V5 requirement
E_res	5 keV σ @ 122 keV	5 keV σ @ 122 keV
Power	1.5 mW/cm2	Same as v4 or lower. (1.0 mW/cm2 analog, 3 mW digital)
Pixel pitch	1 x 1 mm2	500x500 um2
Si thickness	500um	525 um (thinned)
Depletion depth	500 um	500 um
Event Timing Resolution	1 us	<0.1 us (expect O(10)ns)


Backup

Publication history

- ATLASPix
 - https://arxiv.org/abs/2101.02665
 - https://arxiv.org/abs/2109.13409
- AstroPix_v1 (analog data)
 - o https://arxiv.org/abs/2209.02631
- AstroPix v2 (analog data)
 - o https://arxiv.org/abs/2302.00101
- AstroPix_v2 (digital data), initial

AstroPix_v3

- https://pos.sissa.it/444/644/pdf
- A-STEP, utilizing AstroPix_v3
 - o https://pos.sissa.it/444/579/pdf

20

14

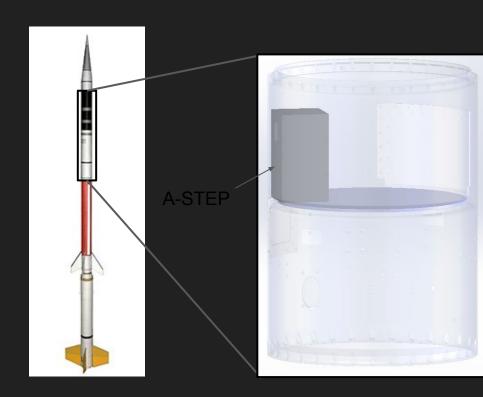
0 5 Energy resolution [%]

Digital Data

DIFFERENT DATA STRUCTURE IN V3 THAN IN V4

- OR row and column information to only two channels (row, col) are sent to digital top
 - Pixel array acting like strips
- Encoded digital information:
 - ChipID relates chip to location in daisy chain
 - Payload relates to SPI line
 - Location row or column with comparator that measured over threshold
 - Timestamp 8bit value counted with 2 MHz clock
 - isCol boolean for row or column
 - LSB, MSB, ToT time over threshold value, converted to us offline given clock speeds
- Each hit (row or column data packet) = 5 Bytes
- A "good event" requires:
 - One row and one column packet in same readout stream
 - Matching timestamp
 - No ToT matching requirement at GSFC

V3 substrates


Fabricated chips (single chips and quad-chips) using 3 different substrates

		Quad	Quad	S3			
	S1	3	7	S4	S11		ĺ
Quad		Quad	Quad	S5	Quad		١
	1	4	8	S6	11		
Quad 2		Quad 5	Quad 9	S7	Quad 12		١
				S8			V
	S2	Quad	Quad	S9	S12	7	7
	6	10	S10				

	TSI Substrate	Okmetic Substrate	Topsil Substrate
Purpose	Testing	Backup Flight	
Resistivity [Ω*cm]	50	300-400	10,000
Number of wafers	2	2	3
Diced and mounted on test board?	Yes	No (in progress)	Yes
Breakdown voltage [-V]	250	290	High leakage current (uA) with any applied voltage
Leakage current, -150V [-nA]	40	40	High (80mA at -30V)
Testing notes	Low-quality substrate, high pixel variability	Primary test substrate, to fly on A-STEP Challenging - WIP to understand	

Work to be done for A-STEP

- First flex bus bar designed to connect upper 2 chips in quad chip
- First test of chip daisy-chains
- Scaling of firmware to handle multiple chips / multiple layers
- Mechanical testing of wire bonds, support structure (windowpane-like supports, not solid PCB)
- Flight software for data packetization and telemetry (new sophistication to DAQ)
- Eventual environmental testing of full system
 - Vibration, temperature/vacuum, etc

Firmware Development Highlights (2023)

Led by R. Leys and N. Striebig (KIT)

- Two FW lines
 - o "simple" / easily hackable version for 1 chip and NEW multi-layer / multi-row FW
- Support for multiple targets
 - Different FPGA boards (bench testing vs A-STEP flight) and chip configs (single chip, multi-layer, etc)
- FW-driven SPI readout
 - Previously, SW-driven readout strategy introduced additional deadtime
 - Now chip itself triggers readout when there is data in buffers
 - Sensor data frame detection IDLE discard, Tagging/reframing, routing to single Readout Buffer
 - o Readout config options: Continuous, interrupt driven, trigger support (in development), etc.
- Scale-ability
 - Read through the daisy-chain in FW rather than SW
 - Each daisy-chained SPI input has own interface which feed into global buffer (one chip reads out a time)
 - Supports up to 20 SPI inputs but exact number in use can be easily modified

MORE Firmware Development Highlights (2023)

Led by R. Leys and N. Striebig at KIT

- Host communication
 - o Interface with computer via Host SPI, USB-UART, FTDI USB-FIFO (for now)
- Simulated test structures and ease of coordinate development
 - Improved Python SW interfacing with FW type
 - Version discovery to ease SW development
 - Simulate hit data at "SPI interface to global buffer" level
 - Python-based verification (Cocotb) allows SW testing in simulation, regression testing
 - WIP: Generate physical SPI frames for verification simulations (N. Striebig, S. Scherl)

Housekeeping

- Include packets of housekeeping data in data stream, as defined by user (voltages on FPGA, FPGA temp, etc)
- o FPGA XADC driver for internal values, SPI channels for external ADC
- Readout and external IC support fully SW driven