Monolithic Stitched Sensor

HEP-IC 2024

João de Melo - Brookhaven National Laboratory jmelo@bnl.gov

Monolithic Stitched Sensor

Outline

□ Monolithic Stitched Sensor (ER1 Submission)

- Introduction
- ER1: MOSS and MOST (timing prototype)
- MOST: Architecture and Design
- Design Challenges

□Next generation (ER2 Submission)

- MOSAIX (Alice/ITS3 upgrade)
- Readout Link

Introduction

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
 - Typical sizes of few cm²
 - modules are tiled with chips connected to a flexible printed circuit board

Principle of photolithography

Alice/ITS2

□Wafer-scale sensors: stitching

- New option: stitching, i.e. aligned exposures of a reticle to produce larger circuits
- wafer-size chip

Motivation: Reduction of the material budget

Challenges: Power supply, cooling, and design/yield

ER1 Submission

Learn and prove stitching

- Two large stitched sensor chips (MOSS, MOST)
- Different approaches for resilience to manufacturing faults
- Small test chips (Pixel Prototypes)

Aim of the **MOST** submission:

- Investigate power and signals on wafer scale chip
- Higher granularity in power gating in case of a defect of
 - analog (rows of 4 pixels)
 - digital (half columns)
- Explore low power asynchronous serial readout solutions
- Immediate transfer of hit data to the periphery (no strobing).
- Explore long line (several cm range) transmissions timing and power performance

MOST High-Level Architecture

□ Matrix in more details

Matrix (zoom) layout

TOP Periphery

Column Address Generator / Pulsing (test the 25 cm lines)

Digital pulsing & readout

- A test pulse can be fed at the bottom and travels across the full chip to the top and then back
- Fired pixels send their address to the bottom
 - Bitstream of 1Gbps (programable)
 - There are 256 of these lines on MOST (4 per column)
- Buffered several times along chip

□Bottom Periphery

- Peripheral circuits for encoding and merging the global columns:
 - Append column ID to the serial address
 - 64 x 4 = 256 lines to be merged into 4 output channels
 - Digital Pulsing Selector
- Off-chip transmission:
 - 4 x CML Drivers

Bottom Periphery: Column Encoding Circuitry (256 units)

□Bottom Periphery: Off-Chip Transmission

- 4 x CML Drivers (with adjustable BIAS)
 - Single-ended-to-differential converter
 - Capacitive pre-emphasis
 - BW up to 2GHz

Monolithic Stitched Sensor

ER1 Dicing and Test System

Measurement Results (MOST)

□Pulsing & Readout

- All 256 readout lines work across the full length of the chip/across all stitches
- Decoding of pixel addresses work nicely
- Chip is functional, including front ends, sometimes pixel address is only transmitted partially
- Detailed tests ongoing, also on behavior of pixels adjacent to powered down pixels

Wafer-scale MAPS offer a unique possibility to build ultra-light, highly granular detectors

Design Challenges

□ Metal spacing and width for **yield** (DFM)

□ Minimum channel length and space between devices for yield

□ Readout due to a large area of pixels/information

Power supply routing to minimize voltage drops

• Power supply regulation?

□BIAS generation and distribution (voltage *vs* current)

MOSAIX (ER2) - Sensor Dimensions

Wafer scale sensor design using the stitching technique

Process: TPSCo 65 nm CMOS Imaging Sensors(customized)

MOSAIX (ER2) - Top Integration Diagram

Figure 3.34: Block diagram of the sensor segment.

ER2 Stitched Sensor (MOSAIX)

Front-End and Biasing

DEvolution path

□ DPTS -> MOSS -> MOSAIX

✓ Improving transistor sizing and new layout

Unit Biasing (per Tile)

Specification	Value	Comment
Current consumption	$< 30 \mathrm{nA}$	IBIAS + discriminator standby current
Dynamic energy (@ $600 e$)	$\leq 10 \mathrm{pJ}$	No hard spec. as negligible wrt total power
Nominal threshold	$\approx 150 e$	1/4 of MIP
Equivalent Noise Charge	< 18 e	
Threshold mismatch	< 18 e	
Gain (@ threshold)	$> 400 \mu V/e$	Simulated avoiding discriminator kick-back
Phase margin	$> 45^{\circ}$	_
Time of Arrival	$< 1 \mu s$	
Time over Threshold ($@ 600 e$)	$\ll 1 \mathrm{ms}$	For lost hit probability $< 1\%$
Threshold sensitivity vs supply drop	$<2\;e/{\rm mV}$	Supply drop on AVDD and AVSS
Detection efficiency	>99%	

Table 3.5: Analog front-end characteristics.

Power Domains, Currents and IR Drops

Supply purpose	Nets	Voltage [V]	Current [mA]	Pads on LEC	Pads on REC
Services	SDVDD-SDVSS	1.2 to 1.32	227	Yes	Yes
Global analog	GAVDD-GAVSS	1.2 to 1.32	540	Yes	Yes
Global digital	GDVDD-GDVSS	1.2 to 1.32	1369	Yes	Yes
Serializers	TXVDD-TXVSS	1.8	200	Yes	No
Substrate bias	PSUB	$-1.2 \ {\rm to} \ 0$			

Alice/ITS3

Increases complexity and power dissipation

Estimates of IR drops

- Simple model, one global domain
- Assuming new metal stack (tick metal)

Data Readout / SBB

Differential transmission scheme with low voltage swing

 Power efficiency, immunity to supply noise, reduction of noise injection into sensing analog nodes

□ Parasitic extraction (PEX)

- R=16 Ohm/mm (22 Ohm worst)
- C=0.24 pF/mm (0.3 pF worst)

Line Model and AC Analysis

- 4 x RCWIRE model has the same response as the extraction
- □ For a TL length \approx 10.833mm
 - BW-3dB ≈ 800MHz

Single RCWIRE model has a slightly different AC response compared to the extraction

SBB - Transmitter Scheme

Capacitive Transmitter with low swing signals for energy efficiency

- Charging a fraction of the capacitance of the Line (ratio depends on a minimum required swing over the line)
- Energy $\propto \mathbf{C} \cdot V^2$

SBB – 160Mbps Data Buffer (RX + TX)

Clocked Comparator

Dynamic comparator **offset** (diff. input)

 $4\sigma < \pm 30 \text{mV}$ (margin to reduce the swing over the line)

Timing analysis between SBB (Verification)

Timing analysis of the loop @ the last Data Buffer / clk over PVT

Simulation Results / Validation

□ Eye diagram over corners (PRBS generator)

□ 16 Corners

- MOS: SS SF FS FF
- Temp: -20 +65 C
- Supply: -10% 10%

Line model RC worst

- R=22 Ohm/mm
- C=0.3 pF/mm
- During the design process, the DATA TX amplitude was optimized to accommodate, in the worst corner, the offset of the comparator with some margin (4σ of ±30mV plus ±20 mV).

Simulation Results / Validation

□Eye and clock considering noise:

- Transient noise (fmax=10G)
- VDD_SBB-A with 50mVpp sine wave @31MHz
- VDD_SBB-B with 50mVpp sine wave @43MHz

Clock comparator <71>

SBB – Power Improvements (Ongoing)

□Power update TDR

Table 3.9: Estimates of power consumption of the circuits composing one repeated sensor unit (RSU). All values are for $25 \,^{\circ}$ C temperature and $1.2 \,^{\circ}$ V supply voltage. Changes of operating settings determine the increase between the nominal and maximum DC values. Process variations determine the increase between the expected and maximum leakage values.

	Power [mW]								
	DC		Dynamic	Leakage		Total			
	Nominal	Max		Expected	Max	Expected	Max		
Analogue pixels	30	50				30	50		
Digital pixels			0.2	12	32	12	32		
Digital columns			2.7	16	42	18	44		
Biasing and monitoring	4.3	4.3				4.3	4.3		
Readout peripheries			36	1.3	3.4	37	39		
Data backbone	11	11	5		13.	3 (16)	16		
RSU Total	45	65	44	29	77	118	185		
(4.24 cm^2)						115			

SBB power about 12% of the Total

Possible Improvements

a) 6 RSU x 2 half-SBB x 19uW = 8.3mW reduction for a total area of 25.43 cm²
(0.28 mW/cm²). Possible improvement of 0.32 mW/cm² + 0.062 mW/cm² (half of the vertical clock). Equivalent of ~ 1.4 % of the total power of the chip.

b) Adding a 2-bit configuration to reduce the pre-emphasis cap of the **TX** in TYP conditions

c) Calibrating the offset of the comparator to further reduce the swing in the line. Requires a state machine and a 4-bit cap DAC.

Thanks!