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Part |: Temporal Computing

Computing with the arrival times of rising edges



Logic gates have natural temporal interpretations.

Let a wire that switched from
low to high voltage at time t

AV B & min(ta,tg) AANB <= max(tg,tgp)
encode the value t.

A A 0
B Q B
Temporal operation . .
. ol ol I
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. . | |
logical OR min A > A >
time time
RC circuit delay + RC



Mathematicians have long studied max-plus/min-plus algebras.

Max-plus (tropical) semiring:

v Associativity v/ Additive identity

a P b:=max(a,b) v Commutativity v Multiplicative identity
V' Distributivity X Additive inverses

a@®@b=a+b v Multiplicative inverses

DNA sequence alignment chip (2017):
Madhavan et al., 2017 IEEE Custom Integrated Circuits
Conference (CICC), 1-4. IEEE.

Theory of temporal state machines (2021): Madhavan,
Daniels, Stiles, ACM Journal on Emerging Technologies in

Computing Systems (JETC), 17 (3), 1-27.




Certain problems can be solved by “races” in graphs.

Pattern P
A C T G A G A

Early work on race logic showed that
: : : o|1|2|3|4|5]|6]|7
problems with optimal substructure (i.e.
dynamic programming problems) map 0 >?
neatly into temporal computing. G 1
A
2
T
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Madhavan et al., 2017 IEEE Custom Integrated Circuits Conference (CICC), 1-4. IEEE. 7



Certain problems can be solved by “races” in graphs.

symbol from P (2 bit)

| Pattern P
A C T G A G A
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Madhavan et al., 2017 IEEE Custom Integrated Circuits Conference (CICC), 1-4. IEEE. 8



How can we generalize this!?

* Building graph problems directly into CMOS can
be difficult for non-planar graphs

 We don’t want to hardcode every single problem
into an ASIC.

* We would like to be free of certain physical
constraints.



Physics restricts what a single temporal “race” can compute.

Restrictions on pure race logic:

* Causality: if the output of a function depends on one of the inputs,
then the output’s time must be later than that input’s time

* Time-translational invariance: the function must behave the same
regardless of when it’s used

f,+96,..,t,+6) =f(ty, ..., t,) + 6
f(5® tl:---;5® tn) — 5®f(t1,...,tn)

10



You can’t even add temporal signals together!

* Time-translational invariance: the function must behave the same
regardless of when it’s used

fl,+6,..,t, +6)=f(ty,...,.t,) + 6
* For example, cannot compute

f(t,t) =t + t,.

11



We can recover addition and other ops via state machines.

How can we break
invariance? _
0=ty to

1. Mathematically, by
. . o« o ecole delay by
designating a privileged t oo il rocorded
point in time (e.g. the

t
temporal origin) — .
b difrence recorded
2. Physically, by introducing a i
changeable, hidden state t,+t—t)
- tl + tz

12



Memrisitve devices can save times as resistances.

Crosspoint

i

* Two-terminal metal / oxide / metal structure

* Filamentary switching (physics not yet fully understood!)

SET
(turn ON) e
RESET
| (turn OFF) .?.'

%

%*

.

%
%

Filament shape is retained in absence of applied voltage

Adapted from Waser R. et al (Nanoelectronics & Information Technology., 2012) 13



A single cell can be used to read and write

temporal signals from memristor devices.

Write mode Read mode

ored[.
_|>oQutput line

¢ programming 0

Input line t; @ ‘ i transistor Input line i

_1_ Level

= shifter

state pull-down
. capacitor transistor
Reference line

tO s

programming control

14



A naturally parallel operation emerges from a

crossbar memory of such delay elements.

pre 4F- 4E 9
Tiling this cell gives rise to a f
; 8 o _&L 5, —|E‘L 5 H
natural temporal analog of . L | - B
vector-matrix multiplication. 2L 510 _||:l'_ 5, _||:L'_ E_ 57 _|{ i
t3 A A e e - — 1
This “tropical” min-plus L 613 —|[l_ — 823 —||:l— — 3833 —||:l_
version of linear algebra ta = —1 -
naturally expresses L 014 ‘||:: i 024 —||:: L 034 —||::
graph traversal.
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Tropical matrix multiplication builds the minimal
spanning tree in a graph.




ALGORITHM 3: Pseudocode for Temporal Dijkstra’s Algorithm

Input: graph G, source node s
// Variable initializations

—

d:= 0g; // distances to unvisited nodes (tropical one-hot labels source)
U := o0; // visited nodes (tropical zero vector)
P := oo; // parent matrix (tropical zero matrix)
A= adjacency-matrix(G); // adjacency matrix of the graph
while (@} d; < oo) do

fi := argmin(d); // choose node to visit

// Examine neiihbors

f =d 4 €; // keep only newly found shortest paths

// Update records for the next iteration

v=0@n // record the current node as visited

d=de f; // construct new record of shortest paths

d:=d4d; // update global unvisited distance vector

// Parent vector update process

f‘ = binarize(f); // vector indices of found nodes

P:= f‘ 4 P; // delete row data of previously recorded parents for found

nodes

I-"ﬁ = f; // record in column 7 distances f from i to the found nodes
end

return P; // adjacency matrix of the minimal spanning (from s) subgraph of G

17



Edge traversal is almost as good as a temporal

ASIC, and much better than non-temporal ASICs.

DNA chip
(a) b Edge traversal rate (ns')
0.01 0.1 1 10 100 10
% < | | | | 10000
(b)
1000 —~
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— — i — = sub-28 nm
ASIC 180nm n node
(b) —] 01 8
i - &
1 | 0.01
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5 y GPU 0.001
4 1 | C,'a | 0.0001

Madhavan, Daniels, and Stiles, ACM J. Emerg. Tech. in Comp. Sys. 17, 3 (2021) .



I: Stochastic Computation

Computing using randomness



MT]s bridge magnetism and electronics.

<100 nm

y
A

Fixed Layer (Fe)
Tunneling Barrier (MgO)
Free Layer (Fe)

TEM image: Yuasa, Nagahama, Fukushima,
Suzuki & Ando, Nat. Mater. 3, 868 (2004)

Magnetic tunnel junctions (MT]s) associate
magnetic state with resistive state

low-resistance state

high-resistance state

20

20



We use MT]s (and memristors) as weights S
in hardware neural networks.

User interface , g Digital ™
: ' Potentlometers

Terminal to
Linux OS

20,000 ReRAM
Device Chip

| w BRI
[ ) S ) SR SR ) A e
1 { Lo

CPGA Slot "'/ g

Integrated MT] crossbar neural network experiment: Figure above (from first experiment using Daffodil):

Borders, Madhavan, Daniels, et al, arXiv:2312.06446,  Yousuf et al, arXiv.2404.15621 (2024)
Phys. Rev. Appl. (accepted; in press, 2024)

contact: nanotechnologyxccelerator@nist.gov



Grown differently, MT]Js can be used to generate

high-quality random bits.

Nonvolatile memory for storage (MRAM)

Energy Retention © | | | | [
barrier Time - P
_-0.22 ! J
60 kT years o e
E }
)
g -0.23+ -
%
8
I‘-.-u...“
AW it W |
-0.24 , 1 l . B
1 1.2 14 1.6 1.8 2 10% 10* 10° 10° 107 108
Time (ms) Count

</ kT US =

= Thermally driven, superparamagnetic tunnel junctions (SMT]s)

Talatchian, Daniels, et al,, Phys. Rev. B 104 (5), 054427, 2021 2



Simple logic gates get new interpretations in every

new encoding—AND/OR gates make a neuron.

AND gate OR gate (nonlinear add)
(multiply) LI L
Example Example @
1001010100 (0.4) 1001010100 (0.4) mﬂ_lmmﬂmﬂl_lﬂ

x 1010001110 (0.5) + 1010001110 (0.5)

PAND = PaPb PoR = Pa + Pb — PaPb

23



Energy efficiency gains arise when you get high

quality randomness for free.

Energy per inference (nJ)

DO | =

oSC-DCNN6

" * 2-8x better energy efficiency than
RelLUe® Logistice .
Tanhe e SC-DENNT] contemporary stochastic
computing networks on same task,
same technology node

HEIF
& This work (scaled) * Accuracy lower than state-of-the-
art, could be worse — more
1 2 3 1 5 6 algorithmic work needed.
LeNet5 MNIST inference error (%)

L

Standard test dataset
(handwritten digits)

Standard deep neural network structure
(early convolutional neural network) Daniels et al, Physical Review Applied 13, 034016 (2020) 24



Ising models are physics models that map to
combinatorial optimization problems.

(X,Y) such that XY = F

25



In fact, Ising models are equivalent to many

problems of interest.

rontiers in
PHYSICS

REVIEW ARTICLE
published: 12 February 2014
doi: 10.3389/fphy.2014.00005

Ising formulations of many NP problems

Andrew Lucas*

Lyman Laboratory of Physics, Department of Physics, Harvard University, Cambridge, MA, USA

Edited by:
Jacob Biamonte, ISI Foundation,
Italy

Reviewed by:

Mauro Faccin, ISI Foundation, Italy
Ryan Babbush, Harvard University,
USA

Bryan A. O’'Gorman, NASA, USA

We provide Ising formulations for many NP-complete and NP-hard problems, including
all of Karp's 21 NP-complete problems. This collects and extends mappings to the Ising
model from partitioning, covering, and satisfiability. In each case, the required number of
spins is at most cubic in the size of the problem. This work may be useful in designing
adiabatic quantum optimization algorithms.

Keywords: spin glasses, complexity theory, adiabatic quantum computation, NP, algorithms

26



You can implement an Ising spin using an MT].

Fixed Vm Pexp(m)
p —bit' Vdd 0.12
V . Five coupled p-bits: 0.10 Equal probability of all
bo out A, B, C, and the two 0.08 “correct” configurations
v bits of their sum F=
Stoch?\'/ls_tlij - dd ) 0.04
time 0.02

| , .
NMOS . 0.00 g ¥ %030 o
/e | Vout = £Vaa > 7@
+ Vour . .ppe
> Makes scaling difficult
R \

—_— _J
SoreE ¢ Vout = tanh (Vln) (@) A
Veee 5 Weight update [Eq. (3)] 15 . |Synapse [Eq. (2)]
ata et Eaae e 7 L -
W Ve 3 Micro
Vdd . " lvm: Neorons [Eq. (1)]
b 1
out > E_les,s
{ ,,,} évm;i v . ;
VO Vin 7 - <

Kaiser, Borders, Camsari, Fukami, Ohno, and Datta, Phys. Rev. Applied 17, 014016 (2022). 27



Our experiment shows direct analog coupling of
these Ising spins, and can scale via crossbars.

Adjustable :
Y / current Vi —AAMA—-
SMTI-1 Output Stage R2.n J-2 Input Stage
e A —A

Transconductance Stage Threshold Stage Level Shifting Stage Transconductance Stage

Vpower V_p_cmrer Vpower
Ryc g C\l P _/\/\/\/\l Ry
fixed
RGS Rgain
15v
VSMTJ-1

E - VTH

VLS—L{>_{ VSMTJ-2

IsmTy-1
+
VMID
E Ry C‘D
N

> 655 2.50 . = 829
-~ — — 6.82 o 9
E s > 1.30 < =
T 615 = 125 1.25 077 823
: > > = 61 E ‘
575 0.00 - 120 6.72 Z 817
- 0 100 200 1] 100 200 0 100 200 0 100 200 0 100 200
Time (us) Time (us) Time (us) Time (ps) Time (us)

Gibeault, Adeyeye, Pocher, Lathrop, Daniels, Stiles, McClelland, Borders,

Ryan, Talatchian, Ebels, Madhavan, Phys. Rev. Applied 21, 034064 (2024). 28



Increasing the gain corresponds to lowering the
model’s effective temperature.

)
Gain =0.0 E’ P P - parallel s=1
S AP AP —antiparallel s=-1
SMTIJ-2
P
Energy = —GJ 5155
518
AP Population ~ Exp [G / leZI
, |” ‘ l SMTJ-1
Gain =0.06 m P Tegr =T/G

SMTI-2

\
&

B

Gibeault, Adeyeye, Pocher, Lathrop, Daniels, Stiles, McClelland, Borders,
Ryan, Talatchian, Ebels, Madhavan, Phys. Rev. Applied 21, 034064 (2024). 29



Increasing the gain corresponds to lowering the

model’s effective temperature.

Mean time in each

Lines and curve —
four-state Markov model

configuration

Correlation Coefficient

0.02 0.04 0.06
Gain

~ 1/Tesr

s=1
s=-1

P - parallel
AP — antiparallel

Energy = — GJ 515,

518
Population ~ Exp [G] le2]
Tegs =T/G
Tij = To Exp |G T
Next steps:

Connect a larger set of “spins”
Design an ASIC with a crossbar

Gibeault, Adeyeye, Pocher, Lathrop, Daniels, Stiles, McClelland, Borders,
Ryan, Talatchian, Ebels, Madhavan, Phys. Rev. Applied 21, 034064 (2024). 30



CMOS+X:

* Adding new devices with novel functionality can
influence how you think about the whole stack.

Temporal computing:

* Natural, efficient graph computation

* future: log-domain analog neural networks
Stochastic computing:

* Fast, high-quality random bits = new architectures
* Ising machines for combinatorial optimization

* future:stochastic training of
low-precision neural networks
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